2022-2023學(xué)年江蘇省句容市后白中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁(yè)
2022-2023學(xué)年江蘇省句容市后白中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁(yè)
2022-2023學(xué)年江蘇省句容市后白中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁(yè)
2022-2023學(xué)年江蘇省句容市后白中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁(yè)
2022-2023學(xué)年江蘇省句容市后白中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,與正方形ABCD的兩邊AB,AD相切,且DE與相切于點(diǎn)E.若的半徑為5,且,則DE的長(zhǎng)度為()A.5 B.6 C. D.2.如圖,⊙O是△ABC的外接圓,∠B=60°,OP⊥AC于點(diǎn)P,OP=2,則⊙O的半徑為().A.4 B.6 C.8 D.123.如圖,的外接圓的半徑是.若,則的長(zhǎng)為()A. B. C. D.4.如圖,△ABC中,點(diǎn)D,E在邊AB,AC上,DE∥BC,△ADE與△ABC的周長(zhǎng)比為2∶5,則AD∶DB為()A.2∶5 B.4∶25 C.2∶3 D.5∶25.如圖,拋物線的圖像交軸于點(diǎn)和點(diǎn),交軸負(fù)半軸于點(diǎn),且,下列結(jié)論錯(cuò)誤的是()A. B. C. D.6.△ABC中,∠C=Rt∠,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB、BC分別交于點(diǎn)E、D,則AE的長(zhǎng)為()A. B. C. D.7.如圖,⊙O中,弦AB、CD相交于點(diǎn)P,∠A=40°,∠APD=75°,則∠B的度數(shù)是()A.15° B.40° C.75° D.35°8.若關(guān)于x的一元二次方程ax2+bx+6=0(a≠0)的其中一個(gè)解是x=1,則2018﹣a﹣b的值是()A.2022 B.2018 C.2017 D.20249.如圖是攔水壩的橫斷面,,斜面坡度為,則斜坡的長(zhǎng)為()A.米 B.米 C.米 D.24米10.如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形二、填空題(每小題3分,共24分)11.已知2是關(guān)于x方程x2-2a=0的一個(gè)解,則2a-1的值是______________.12.四邊形ABCD與四邊形位似,點(diǎn)O為位似中心.若,則________.13.如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=的圖象交于A(﹣1,2),B(1,﹣2)兩點(diǎn),若y1>y2,則x的取值范圍是_____.14.如果將拋物線平移,頂點(diǎn)移到點(diǎn)P(3,-2)的位置,那么所得新拋物線的表達(dá)式為___________.15.如圖,菱形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,AC=6,BD=8,那么菱形ABCD的面積是____.16.已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:,,;,,其中正確的結(jié)論序號(hào)是______17.一個(gè)口袋中裝有2個(gè)完全相同的小球,它們分別標(biāo)有數(shù)字1,2,從口袋中隨機(jī)摸出一個(gè)小球記下數(shù)字后放回,搖勻后再隨機(jī)摸出一個(gè)小球,則兩次摸出小球的數(shù)字和為偶數(shù)的概率是.18.如圖,正方形ABCD邊長(zhǎng)為4,以BC為直徑的半圓O交對(duì)角線BD于E.則直線CD與⊙O的位置關(guān)系是_______,陰影部分面積為(結(jié)果保留π)________.三、解答題(共66分)19.(10分)A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.20.(6分)如圖,BD是⊙O的直徑.弦AC垂直平分OD,垂足為E.(1)求∠DAC的度數(shù);(2)若AC=6,求BE的長(zhǎng).21.(6分)在平面直角坐標(biāo)系中,直線y=x﹣2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)y=x2+bx+c的圖象經(jīng)過B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A.(1)直接寫出:b的值為;c的值為;點(diǎn)A的坐標(biāo)為;(2)點(diǎn)M是線段BC上的一動(dòng)點(diǎn),動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.設(shè)點(diǎn)D的橫坐標(biāo)為m.①如圖1,過點(diǎn)D作DM⊥BC于點(diǎn)M,求線段DM關(guān)于m的函數(shù)關(guān)系式,并求線段DM的最大值;②若△CDM為等腰直角三角形,直接寫出點(diǎn)M的坐標(biāo).22.(8分)某商場(chǎng)以每件42元的價(jià)格購(gòu)進(jìn)一種服裝,由試銷知,每天的銷量t(件)與每件的銷售價(jià)x(元)之間的函數(shù)關(guān)系為t=204-3x.(1)試寫出每天銷售這種服裝的毛利潤(rùn)y(元)與每件售價(jià)x(元)之間的函數(shù)關(guān)系式(毛利潤(rùn)=銷售價(jià)-進(jìn)貨價(jià));(2)每件銷售價(jià)為多少元,才能使每天的毛利潤(rùn)最大?最大毛利潤(rùn)是多少?23.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),拋物線的對(duì)稱軸x=1,與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).(1)求這個(gè)二次函數(shù)的解析式及A、B點(diǎn)的坐標(biāo).(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形;若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大;求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.24.(8分)(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識(shí)競(jìng)賽“,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問題:成績(jī)分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計(jì)■1(1)寫出a,b,c的值;(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;(3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來自同一組的概率.25.(10分)如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊BC,AB分別相切于C,D兩點(diǎn),與邊AC交于E點(diǎn),弦CF與AB平行,與DO的延長(zhǎng)線交于M點(diǎn).(1)求證:點(diǎn)M是CF的中點(diǎn);(2)若E是的中點(diǎn),BC=a,①求的弧長(zhǎng);②求的值.26.(10分)閱讀材料材料1:若一個(gè)自然數(shù),從左到右各位數(shù)上的數(shù)字與從右到左各位數(shù)上的數(shù)字對(duì)應(yīng)相同,則稱為“對(duì)稱數(shù)”.材料2:對(duì)于一個(gè)三位自然數(shù),將它各個(gè)數(shù)位上的數(shù)字分別2倍后取個(gè)位數(shù)字,得到三個(gè)新的數(shù)字,,,我們對(duì)自然數(shù)規(guī)定一個(gè)運(yùn)算:.例如:是一個(gè)三位的“對(duì)稱數(shù)”,其各個(gè)數(shù)位上的數(shù)字分別2倍后取個(gè)位數(shù)字分別是:2、8、2.則.請(qǐng)解答:(1)一個(gè)三位的“對(duì)稱數(shù)”,若,請(qǐng)直接寫出的所有值,;(2)已知兩個(gè)三位“對(duì)稱數(shù)”,若能被11整數(shù),求的所有值.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接OE,OF,OG,根據(jù)切線性質(zhì)證四邊形ABCD為正方形,根據(jù)正方形性質(zhì)和切線長(zhǎng)性質(zhì)可得DE=DF.【詳解】連接OE,OF,OG,

∵AB,AD,DE都與圓O相切,

∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,

∵四邊形ABCD為正方形,

∴AB=AD=11,∠A=90°,

∴∠A=∠AGO=∠AFO=90°,

∵OF=OG=5,

∴四邊形AFOG為正方形,

則DE=DF=11-5=6,

故選:B【點(diǎn)睛】考核知識(shí)點(diǎn):切線和切線長(zhǎng)定理.作輔助線,利用切線長(zhǎng)性質(zhì)求解是關(guān)鍵.2、A【解析】∵圓心角∠AOC與圓周角∠B所對(duì)的弧都為,且∠B=60°,∴∠AOC=2∠B=120°(在同圓或等圓中,同弧所對(duì)圓周角是圓心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等邊對(duì)等角和三角形內(nèi)角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定義).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所對(duì)的邊是斜邊的一半).∴⊙O的半徑4.故選A.3、A【分析】由題意連接OA、OB,根據(jù)圓周角定理求出∠AOB,利用勾股定理進(jìn)行計(jì)算即可.【詳解】解:連接OA、OB,由圓周角定理得:∠AOB=2∠C=90°,所以的長(zhǎng)為.故選:A.【點(diǎn)睛】本題考查的是三角形的外接圓和外心的概念和性質(zhì),掌握?qǐng)A周角定理和勾股定理是解題的關(guān)鍵.4、C【分析】由題意易得,根據(jù)兩個(gè)相似三角形的周長(zhǎng)比等于相似比可直接得解.【詳解】,,△ADE與△ABC的周長(zhǎng)比為2∶5,,.故選C.【點(diǎn)睛】本題主要考查相似三角形的性質(zhì),關(guān)鍵是根據(jù)兩個(gè)三角形相似,那么它們的周長(zhǎng)比等于相似比.5、B【分析】A根據(jù)對(duì)稱軸的位置即可判斷A正確;圖象開口方向,與y軸的交點(diǎn)位置及對(duì)稱軸位置可得,,即可判斷B錯(cuò)誤;把點(diǎn)坐標(biāo)代入拋物線的解析式即可判斷C;把B點(diǎn)坐標(biāo)代入拋物線的解析式即可判斷D;【詳解】解:觀察圖象可知對(duì)稱性,故結(jié)論A正確,由圖象可知,,,,故結(jié)論B錯(cuò)誤;拋物線經(jīng)過,,故結(jié)論C正確,,,點(diǎn)坐標(biāo)為,,,,故結(jié)論D正確;故選:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于二次函數(shù),二次項(xiàng)系數(shù)決定拋物線的開口方向和大?。寒?dāng)時(shí),拋物線向上開口;當(dāng)時(shí),拋物線向下開口;一次項(xiàng)系數(shù)和二次項(xiàng)系數(shù)共同決定對(duì)稱軸的位置:當(dāng)與同號(hào)時(shí)(即,對(duì)稱軸在軸左;當(dāng)與異號(hào)時(shí)(即,對(duì)稱軸在軸右.(簡(jiǎn)稱:左同右異);常數(shù)項(xiàng)決定拋物線與軸交點(diǎn):拋物線與軸交于;拋物線與軸交點(diǎn)個(gè)數(shù)由△決定:△時(shí),拋物線與軸有2個(gè)交點(diǎn);△時(shí),拋物線與軸有1個(gè)交點(diǎn);△時(shí),拋物線與軸沒有交點(diǎn).6、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長(zhǎng);過C作CM⊥AB,交AB于點(diǎn)M,由垂徑定理可得M為AE的中點(diǎn),在Rt△ACM中,根據(jù)勾股定理得AM的長(zhǎng),從而得到AE的長(zhǎng).【詳解】解:在Rt△ABC中,

∵AC=3,BC=4,

∴AB==1.

過C作CM⊥AB,交AB于點(diǎn)M,如圖所示,

由垂徑定理可得M為AE的中點(diǎn),

∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,

∴CM=,

在Rt△ACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+()2,

解得:AM=,

∴AE=2AM=.

故選:C.【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.7、D【分析】由,可知的度數(shù),由圓周角定理可知,故能求出∠B.【詳解】,

,

由圓周角定理可知(同弧所對(duì)的圓周角相等),

在三角形BDP中,

,

所以D選項(xiàng)是正確的.【點(diǎn)睛】本題主要考查圓周角定理的知識(shí)點(diǎn),還考查了三角形內(nèi)角和為的知識(shí)點(diǎn),基礎(chǔ)題不是很難.8、D【分析】根據(jù)題意將x=1代入原方程并整理得出,最后進(jìn)一步整體代入求值即可.【詳解】∵x=1是原方程的一個(gè)解,∴把x=1代入方程,得:,即.∴,故選:D.【點(diǎn)睛】本題主要考查了一元二次方程的解,熟練掌握相關(guān)概念是解題關(guān)鍵.9、B【解析】根據(jù)斜面坡度為1:2,堤高BC為6米,可得AC=12m,然后利用勾股定理求出AB的長(zhǎng)度.【詳解】解:∵斜面坡度為1:2,BC=6m,∴AC=12m,則,故選B.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)坡角構(gòu)造直角三角形,利用三角函數(shù)的知識(shí)求解.10、C【解析】A選項(xiàng),∵在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項(xiàng),∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項(xiàng),因?yàn)樘砑訔l件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯(cuò)誤;D選項(xiàng),因?yàn)橛商砑拥臈l件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.二、填空題(每小題3分,共24分)11、5.【分析】把x=2代入已知方程可以求得2a=6,然后將其整體代入所求的代數(shù)式進(jìn)行解答.【詳解】解:∵x=2是關(guān)于x的方程x2-2a=0的一個(gè)解,∴×22-2a=0,即6-2a=0,則2a=6,∴2a-1=6-1=5.故答案為5..【點(diǎn)睛】本題考查了一元二次方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個(gè)數(shù)代替未知數(shù)所得式子仍然成立.12、1∶3【解析】根據(jù)四邊形ABCD與四邊形位似,,可知位似比為1:3,即可得相似比為1:3,即可得答案.【詳解】∵四邊形與四邊形位似,點(diǎn)為位似中心.,∴四邊形與四邊形的位似比是1∶3,∴四邊形與四邊形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案為1∶3.【點(diǎn)睛】本題考查了位似的相關(guān)知識(shí),位似是相似的特殊形式,位似比等于相似比,其對(duì)應(yīng)的面積比等于相似比的平方.13、x<﹣2或0<x<2【解析】仔細(xì)觀察圖像,圖像在上面的函數(shù)值大,圖像在下面的函數(shù)值小,當(dāng)y2>y2,即正比例函數(shù)的圖像在上,反比例函數(shù)的圖像在下時(shí),根據(jù)圖像寫出x的取值范圍即可.【詳解】解:如圖,結(jié)合圖象可得:①當(dāng)x<﹣2時(shí),y2>y2;②當(dāng)﹣2<x<0時(shí),y2<y2;③當(dāng)0<x<2時(shí),y2>y2;④當(dāng)x>2時(shí),y2<y2.綜上所述:若y2>y2,則x的取值范圍是x<﹣2或0<x<2.故答案為x<﹣2或0<x<2.【點(diǎn)睛】本題考查了圖像法解不等式,解題的關(guān)鍵是仔細(xì)觀察圖像,全面寫出符合條件的x的取值范圍.14、【解析】拋物線y=?2x2平移,使頂點(diǎn)移到點(diǎn)P(3,-2)的位置,所得新拋物線的表達(dá)式為y=?2(x-3)2-2.故答案為y=?2(x-3)2-2.15、1【分析】根據(jù)菱形的面積公式即可求解.【詳解】∵菱形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,AC=6,BD=8,∴菱形ABCD的面積為AC×BD=×6×8=1,故答案為:1.【點(diǎn)睛】此題主要考查菱形面積的求解,解題的關(guān)鍵是熟知其面積公式.16、【分析】由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】由圖象可知:拋物線開口方向向下,則,對(duì)稱軸直線位于y軸右側(cè),則a、b異號(hào),即,拋物線與y軸交于正半軸,則,,故正確;對(duì)稱軸為,,故正確;由拋物線的對(duì)稱性知,拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為,所以當(dāng)時(shí),,即,故正確;拋物線與x軸有兩個(gè)不同的交點(diǎn),則,所以,故錯(cuò)誤;當(dāng)時(shí),,故正確.故答案為.【點(diǎn)睛】本題考查了考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸和拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.17、.【解析】試題分析:如圖所示,∵共有4種結(jié)果,兩次摸出小球的數(shù)字和為偶數(shù)的有2次,∴兩次摸出小球的數(shù)字和為偶數(shù)的概率==.故答案為.考點(diǎn):列表法與樹狀圖法.18、相切6-π【詳解】∵正方形ABCD是正方形,則∠C=90°,∴D與⊙O的位置關(guān)系是相切.∵正方形的對(duì)角線相等且相互垂直平分,∴CE=DE=BE,∵CD=4,∴BD=4,∴CE=DE=BE=2梯形OEDC的面積=(2+4)×2÷2=6,扇形OEC的面積==π,∴陰影部分的面積=6-π.三、解答題(共66分)19、(1);(2).【解析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點(diǎn):用列舉法求概率.20、(1)30°;(2)3【分析】(1)由題意證明△CDE≌△COE,從而得到△OCD是等邊三角形,然后利用同弧所對(duì)的圓周角等于圓心角的一半求解;(2)由垂徑定理求得AE=AC=3,然后利用30°角的正切值求得DE=,然后根據(jù)題意求得OD=2DE=2,直徑BD=2OD=4,從而使問題得解.【詳解】解:連接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等邊三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC垂直平分OD∴AE=AC=3又∵由(1)可知,在Rt△DAE中,∠DAC=30°∴,即∴DE=∵弦AC垂直平分OD∴OD=2DE=2∴直徑BD=2OD=4∴BE=BD-DE=4-=3【點(diǎn)睛】本題考查垂徑定理,全等三角形的判定和性質(zhì)及銳角三角函數(shù),掌握相關(guān)定理正確進(jìn)行推理判斷是本題的解題關(guān)鍵.21、(1)﹣;﹣1;(﹣1,0);(1)①M(fèi)D=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直線yx﹣1與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,則點(diǎn)B、C的坐標(biāo)為:(4,0)、(0,﹣1),即可求解;(1)①M(fèi)D=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三種情況,分別求解即可.【詳解】(1)直線yx﹣1與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,則點(diǎn)B、C的坐標(biāo)為:(4,0)、(0,﹣1).將點(diǎn)B、C的坐標(biāo)代入拋物線表達(dá)式并解得:b,c=﹣1.故拋物線的表達(dá)式為:…①,點(diǎn)A(﹣1,0).故答案為:,﹣1,(﹣1,0);(1)①如圖1,過點(diǎn)D作y軸的平行線交BC于點(diǎn)H交x軸于點(diǎn)E.設(shè)點(diǎn)D(m,m1m﹣1),點(diǎn)H(m,m﹣1).∵∠MDH+∠MHD=90°,∠OBC+∠BHE=90°,∠MHD=∠EHB,∴∠MDH=∠OBC=α.∵OC=1,OB=4,∴BC=,∴cos∠OBC=,則cos;MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m).∵0,故DM有最大值;②設(shè)點(diǎn)M、D的坐標(biāo)分別為:(s,s﹣1),(m,n),nm1m﹣1;分三種情況討論:(Ⅰ)當(dāng)∠CDM=90°時(shí),如圖1,過點(diǎn)M作x軸的平行線交過點(diǎn)D與x軸的垂線于點(diǎn)F,交y軸于點(diǎn)E.易證△MEC≌△DFM,∴ME=FD,MF=CE,即s﹣1﹣1=m﹣s,ss﹣1﹣n,解得:s,或s=8(舍去).故點(diǎn)M(,);(Ⅱ)當(dāng)∠MDC=90°時(shí),如圖3,過D作直線DE⊥y軸于E,MF⊥DE于F.同理可得:s,或s=0(舍去).故點(diǎn)M(,);(Ⅲ)當(dāng)∠MCD=90°時(shí),則直線CD的表達(dá)式為:y=﹣1x﹣1…②,解方程組:得:(舍去)或,故點(diǎn)D(﹣1,0),不在線段BC的下方,舍去.綜上所述:點(diǎn)M坐標(biāo)為:(,)或(,).【點(diǎn)睛】本題是二次函數(shù)的綜合題.主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點(diǎn)的坐標(biāo)的意義表示線段的長(zhǎng)度,從而求出線段之間的關(guān)系.22、(1)y=-3x2+330x-8568;(2)每件銷售價(jià)為55元時(shí),能使每天毛利潤(rùn)最大,最大毛利潤(rùn)為507元.【分析】(1)根據(jù)毛利潤(rùn)=銷售價(jià)?進(jìn)貨價(jià)可得y關(guān)于x的函數(shù)解析式;(2)將(1)中函數(shù)關(guān)系式配方可得最值情況.【詳解】(1)根據(jù)題意,y=(x-42)(204-3x)=-3x2+330x-8568;(2)y=-3x2+330x-8568=-3(x-55)2+507因?yàn)?3<0,所以x=55時(shí),y有最大值為507.答:每件銷售價(jià)為55元時(shí),能使每天毛利潤(rùn)最大,最大毛利潤(rùn)為507元.【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用,理解題意根據(jù)相等關(guān)系列出函數(shù)關(guān)系式,并熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)y=x2﹣2x﹣3,點(diǎn)A、B的坐標(biāo)分別為:(﹣1,0)、(3,0);(2)存在,點(diǎn)P(1+,﹣);(3)故S有最大值為,此時(shí)點(diǎn)P(,﹣).【分析】(1)根據(jù)題意得到函數(shù)的對(duì)稱軸為:x=﹣=1,解出b=﹣2,即可求解;(2)四邊形POP′C為菱形,則yP=﹣OC=﹣,即可求解;(3)過點(diǎn)P作PH∥y軸交BC于點(diǎn)P,由點(diǎn)B、C的坐標(biāo)得到直線BC的表達(dá)式,設(shè)點(diǎn)P(x,x2﹣2x﹣3),則點(diǎn)H(x,x﹣3),再根據(jù)ABPC的面積S=S△ABC+S△BCP即可求解.【詳解】(1)函數(shù)的對(duì)稱軸為:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再將點(diǎn)C(0,﹣3)代入得到c=-3,,∴拋物線的表達(dá)式為:y=x2﹣2x﹣3,令y=0,則x=﹣1或3,故點(diǎn)A、B的坐標(biāo)分別為:(﹣1,0)、(3,0);(2)存在,理由:如圖1,四邊形POP′C為菱形,則yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去負(fù)值),故點(diǎn)P(1+,﹣);(3)過點(diǎn)P作PH∥y軸交BC于點(diǎn)P,由點(diǎn)B、C的坐標(biāo)得到直線BC的表達(dá)式為:y=x﹣3,設(shè)點(diǎn)P(x,x2﹣2x﹣3),則點(diǎn)H(x,x﹣3),ABPC的面積S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴當(dāng)x=時(shí),S有最大值為,此時(shí)點(diǎn)P(,﹣).【點(diǎn)睛】此題是一道二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,圖象與坐標(biāo)軸的交點(diǎn),翻折的性質(zhì),菱形的性質(zhì),利用函數(shù)解析式確定最大值,(3)是此題的難點(diǎn),利用分割法求四邊形的面積是解題的關(guān)鍵.24、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【分析】(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計(jì)算出樣本總?cè)藬?shù),再分別計(jì)算出a,b,c的值;(2)先計(jì)算出競(jìng)賽分?jǐn)?shù)不低于70分的頻率,根據(jù)樣本估計(jì)總體的思想,計(jì)算出1000名學(xué)生中競(jìng)賽成績(jī)不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學(xué)來自一組的情況,利用求概率公式計(jì)算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競(jìng)賽分?jǐn)?shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據(jù)樣本估計(jì)總體的思想,有:1000×0.6=600(人)∴這1000名學(xué)生中有600人的競(jìng)賽成績(jī)不低于70分;(3)成績(jī)是80分以上的同學(xué)共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué),情形如樹形圖所示,共有20種情況:抽取兩名同學(xué)在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學(xué)來自同一組的概率P==【點(diǎn)睛】本題考查了頻數(shù)、頻率、總數(shù)間關(guān)系及用列表法或樹形圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹形圖法適合兩步或兩步以上完成的事件;概

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論