2024屆黑龍江省雞西虎林市東方紅林業(yè)局重點達標名校中考押題數(shù)學預測卷含解析_第1頁
2024屆黑龍江省雞西虎林市東方紅林業(yè)局重點達標名校中考押題數(shù)學預測卷含解析_第2頁
2024屆黑龍江省雞西虎林市東方紅林業(yè)局重點達標名校中考押題數(shù)學預測卷含解析_第3頁
2024屆黑龍江省雞西虎林市東方紅林業(yè)局重點達標名校中考押題數(shù)學預測卷含解析_第4頁
2024屆黑龍江省雞西虎林市東方紅林業(yè)局重點達標名校中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省雞西虎林市東方紅林業(yè)局重點達標名校中考押題數(shù)學預測卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點.連結MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小2.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉角度(單位:度)()近似滿足函數(shù)關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為()A. B. C. D.3.解分式方程時,去分母后變形為A. B.C. D.4.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-35.-2的倒數(shù)是()A.-2 B. C. D.26.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.7.已知一次函數(shù)y=(k﹣2)x+k不經(jīng)過第三象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<28.如圖,是一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象,則關于x的不等式kx+b>的解集為A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣29.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.10.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______12.為參加2018年“宜賓市初中畢業(yè)生升學體育考試”,小聰同學每天進行立定跳遠練習,并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是_____.13.在一個不透明的空袋子里放入3個白球和2個紅球,每個球除顏色外完全相同,小樂從中任意摸出1個球,摸出的球是紅球,放回后充分搖勻,又從中任意摸出1個球,摸到紅球的概率是

____

.14.不等式1﹣2x<6的負整數(shù)解是___________.15.二次函數(shù)y=(a-1)x2-x+a2-1

的圖象經(jīng)過原點,則a的值為______.16.如圖所示,一動點從半徑為2的⊙O上的A0點出發(fā),沿著射線A0O方向運動到⊙O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到⊙O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到⊙O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到⊙O上的點A4處;A4A0間的距離是_____;…按此規(guī)律運動到點A2019處,則點A2019與點A0間的距離是_____.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?8.(8分)如圖,中,,于,,為邊上一點.(1)當時,直接寫出,.(2)如圖1,當,時,連并延長交延長線于,求證:.(3)如圖2,連交于,當且時,求的值.19.(8分)如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=-8x的圖象交于A、B兩點,與坐標軸交于M、N兩點.且點A的橫坐標和點B的縱坐標都是﹣1.求一次函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出y20.(8分)從一幢建筑大樓的兩個觀察點A,B觀察地面的花壇(點C),測得俯角分別為15°和60°,如圖,直線AB與地面垂直,AB=50米,試求出點B到點C的距離.(結果保留根號)21.(8分)為提高市民的環(huán)保意識,倡導“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?22.(10分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結果保留π).23.(12分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.24.中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:頻數(shù)頻率分布表成績x(分)頻數(shù)(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據(jù)所給信息,解答下列問題:(1)m=,n=;(2)補全頻數(shù)分布直方圖;(3)這200名學生成績的中位數(shù)會落在分數(shù)段;(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學生中成績是“優(yōu)”等的約有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】如圖所示,連接CM,∵M是AB的中點,∴S△ACM=S△BCM=S△ABC,開始時,S△MPQ=S△ACM=S△ABC;由于P,Q兩點同時出發(fā),并同時到達終點,從而點P到達AC的中點時,點Q也到達BC的中點,此時,S△MPQ=S△ABC;結束時,S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.2、C【解析】

根據(jù)已知三點和近似滿足函數(shù)關系y=ax2+bx+c(a≠0)可以大致畫出函數(shù)圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數(shù)據(jù)描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節(jié)省燃氣.故選:C,【點睛】本題考查了二次函數(shù)的應用,二次函數(shù)的圖像性質,熟練掌握二次函數(shù)圖像對稱性質,判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.3、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.4、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.5、B【解析】

根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握6、C【解析】

根據(jù)左視圖是從左面看所得到的圖形進行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.7、D【解析】

直線不經(jīng)過第三象限,則經(jīng)過第二、四象限或第一、二、四象限,當經(jīng)過第二、四象限時,函數(shù)為正比例函數(shù),k=0當經(jīng)過第一、二、四象限時,,解得0<k<2,綜上所述,0≤k<2。故選D8、C【解析】

根據(jù)反比例函數(shù)與一次函數(shù)在同一坐標系內的圖象可直接解答.【詳解】觀察圖象,兩函數(shù)圖象的交點坐標為(1,2),(-2,-1),kx+b>的解就是一次函數(shù)y=kx+b圖象在反比例函數(shù)y=的圖象的上方的時候x的取值范圍,

由圖象可得:-2<x<0或x>1,

故選C.【點睛】本題考查的是反比例涵數(shù)與一次函數(shù)圖象在同一坐標系中二者的圖象之間的關系.一般這種類型的題不要計算反比計算表達式,解不等式,直接從從圖象上直接解答.9、B【解析】試題解析:由圖可知可以瞄準的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.10、C【解析】

當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,

解得:x=0,

故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點睛】本題主要考查相似三角形的判定和性質,正確寫出比例式是解題的關鍵.12、2.40,2.1.【解析】∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它們的中位數(shù)為2.40,眾數(shù)為2.1.故答案為2.40,2.1.點睛:本題考查了中位數(shù)和眾數(shù)的求法,如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是這組數(shù)據(jù)的眾數(shù).13、【解析】【分析】袋子中一共有5個球,其中有2個紅球,用2除以5即可得從中摸出一個球是紅球的概率.【詳解】袋子中有3個白球和2個紅球,一共5個球,所以從中任意摸出一個球是紅球的概率為:,故答案為.【點睛】本題考查了概率的計算,用到的知識點為:可能性等于所求情況數(shù)與總情況數(shù)之比.14、﹣2,﹣1【解析】試題分析:根據(jù)不等式的性質求出不等式的解集,找出不等式的整數(shù)解即可.解:1﹣2x<6,移項得:﹣2x<6﹣1,合并同類項得:﹣2x<5,不等式的兩邊都除以﹣2得:x>﹣,∴不等式的負整數(shù)解是﹣2,﹣1,故答案為:﹣2,﹣1.點評:本題主要考查對解一元一次不等式,一元一次不等式的整數(shù)解,不等式的性質等知識點的理解和掌握,能根據(jù)不等式的性質求出不等式的解集是解此題的關鍵.15、-1【解析】

將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【詳解】解:∵二次函數(shù)y=(a-1)x2-x+a2-1的圖象經(jīng)過原點,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,圖象過原點,可得出x=2時,y=2.16、1.【解析】

據(jù)題意求得A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019與A3重合,即可得到結論.【詳解】解:如圖,∵⊙O的半徑=1,由題意得,A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此規(guī)律A1019與A3重合,∴A0A1019=A0A3=1,故答案為,1.【點睛】本題考查了圖形的變化類,等邊三角形的性質,解直角三角形,正確的作出圖形是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對應角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點:相似三角形的判定與性質.18、(1),;(2)證明見解析;(3).【解析】

(1)利用相似三角形的判定可得,列出比例式即可求出結論;(2)作交于,設,則,根據(jù)平行線分線段成比例定理列出比例式即可求出AH和EH,然后根據(jù)平行線分線段成比例定理列出比例式即可得出結論;(3)作于,根據(jù)相似三角形的判定可得,列出比例式可得,設,,,即可求出x的值,根據(jù)平行線分線段成比例定理求出,設,,,然后根據(jù)勾股定理求出AC,即可得出結論.【詳解】(1)如圖1中,當時,.,,,,,,.故答案為:,.(2)如圖中,作交于.,,∴tan∠B=,tan∠ACE=tan∠B=∴BE=2CE,,,設,則,,,,,,,.(3)如圖2中,作于.,,,,,,,,,,,設,,,則有,解得或(舍棄),,,,,,,,,,,設,,,在中,,,,,.【點睛】此題考查的是相似三角形的應用和銳角三角函數(shù),此題難度較大,掌握相似三角形的判定及性質、平行線分線段成比例定理和利用銳角三角函數(shù)解直角三角形是解決此題的關鍵.19、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】試題分析:(1)先根據(jù)反比例函數(shù)解析式求得兩個交點坐標,再根據(jù)待定系數(shù)法求得一次函數(shù)解析式;(1)將兩條坐標軸作為△AOB的分割線,求得△AOB的面積;(3)根據(jù)兩個函數(shù)圖象交點的坐標,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方時所有點的橫坐標的集合即可.試題解析:(1)設點A坐標為(﹣1,m),點B坐標為(n,﹣1)∵一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y1=﹣8x∴將A(﹣1,m)B(n,﹣1)代入反比例函數(shù)y1=﹣8x∴將A(﹣1,4)、B(4,﹣1)代入一次函數(shù)y1=kx+b,可得4=-2k+b-2=4k+b,解得∴一次函數(shù)的解析式為y1=﹣x+1;,(1)在一次函數(shù)y1=﹣x+1中,當x=0時,y=1,即N(0,1);當y=0時,x=1,即M(1,0)∴=12×1×1+12×1×1+1(3)根據(jù)圖象可得,當y1>y1時,x的取值范圍為:x<﹣1或0<x<4考點:1、一次函數(shù),1、反比例函數(shù),3、三角形的面積20、【解析】

試題分析:根據(jù)題意構建圖形,結合圖形,根據(jù)直角三角形的性質可求解.試題解析:作AD⊥BC于點D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,則∠ACB=45°,在Rt△ADB中,AB=1000,則AD=500,BD=,在Rt△ADC中,AD=500,CD=500,則BC=.答:觀察點B到花壇C的距離為米.考點:解直角三角形21、(1)本次試點投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設本次試點投放的A型車x輛、B型車y輛,根據(jù)“兩種款型的單車共100輛,總價值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數(shù)量比為3:2,據(jù)此設整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)“投資總價值不低于184萬元”列出關于a的不等式,解之求得a的范圍,進一步求解可得.詳解:(1)設本次試點投放的A型車x輛、B型車y輛,根據(jù)題意,得:,解得:,答:本次試點投放的A型車60輛、B型車40輛;(2)由(1)知A、B型車輛的數(shù)量比為3:2,設整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)題意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整個城區(qū)全面鋪開時投放的A型車至少3000輛、B型車至少2000輛,則城區(qū)10萬人口平均每100人至少享有A型車3000×=3輛、至少享有B型車2000×=2輛.點睛:本題主要考查二元一次方程組和一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的相等(或不等)關系,并據(jù)此列出方程組.22、(1)見解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.23、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】

(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,②以點A為旋轉中心將正方形ABCD順時針旋轉60°,分別依據(jù)旋轉的性質以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,如圖所示:過D'

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論