版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題11相似三角形的綜合問題【中考考向?qū)Ш健磕夸汿OC\o"1-3"\h\u【直擊中考】 1【考向一(雙)A字型相似】 1【考向二(雙)8字型相似】 8【考向三母子型相似】 16【考向四旋轉(zhuǎn)相似】 24【考向五K字型相似】 37【直擊中考】【考向一(雙)A字型相似】例題:(2022·上?!ぞ拍昙墝n}練習(xí))如圖,在△ABC中,點D在邊AB上,點E、點F在邊AC上,且DESKIPIF1<0BC,SKIPIF1<0.(1)求證:DFSKIPIF1<0BE;(2)如且AF=2,EF=4,AB=6SKIPIF1<0.求證△ADE∽△AEB.【答案】(1)見詳解;(2)見詳解【分析】(1)由題意易得SKIPIF1<0,則有SKIPIF1<0,進而問題可求證;(2)由(1)及題意可知SKIPIF1<0,然后可得SKIPIF1<0,進而可證SKIPIF1<0,最后問題可求證.【詳解】解:(1)∵DESKIPIF1<0BC,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴DFSKIPIF1<0BE;(2)∵AF=2,EF=4,∴由(1)可知,SKIPIF1<0,AE=6,∵AB=6SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵∠A=∠A,∴△ADE∽△AEB.【點睛】本題主要考查相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.【變式訓(xùn)練】1.(2022·江蘇·九年級專題練習(xí))如圖,在SKIPIF1<0中,SKIPIF1<0,D是SKIPIF1<0上一點,點E在SKIPIF1<0上,連接SKIPIF1<0交于點F,若SKIPIF1<0,則SKIPIF1<0=__________.【答案】2【分析】過D作SKIPIF1<0垂直SKIPIF1<0于H點,過D作SKIPIF1<0交BC于G點,先利用解直角三角形求出SKIPIF1<0的長,其次利用SKIPIF1<0,求出SKIPIF1<0的長,得出SKIPIF1<0的長,最后利用SKIPIF1<0求出SKIPIF1<0的長,最后得出答案.【詳解】解:如圖:過D作SKIPIF1<0垂直SKIPIF1<0于H點,過D作SKIPIF1<0交SKIPIF1<0于G點,∵在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴在等腰直角三角形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,
又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為:2.【點睛】本題考查勾股定理,等腰直角三角形性質(zhì)及相似三角形的判定與性質(zhì)綜合,解題關(guān)鍵在于正確做出輔助線,利用相似三角形的性質(zhì)得出對應(yīng)邊成比例求出答案.2.(2023秋·安徽六安·九年級校考期末)如圖,在SKIPIF1<0中,SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0邊上的高.求證:SKIPIF1<0.【答案】見詳解【分析】先證明SKIPIF1<0,即有SKIPIF1<0,再結(jié)合SKIPIF1<0,即可證明SKIPIF1<0.【詳解】∵SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0邊上的高,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0.【點睛】本題主要考查了相似三角形的判定與性質(zhì),掌握三角形的判定與性質(zhì)是解答本題的關(guān)鍵.3.(2021秋·山東濟寧·九年級校考階段練習(xí))SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,現(xiàn)有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿線段CB也向點B方向運動,如果點P的速度是4cm/s,點Q的速度是2cm/s,它們同時出發(fā),當(dāng)有一點到達所在線段的端點時,就停止運動.設(shè)運動時間為t秒.(1)求運動時間為多少秒時,P、Q兩點之間的距離為10cm?(2)若SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0關(guān)于t的函數(shù)關(guān)系式.(3)當(dāng)t為多少時,以點C,P,Q為頂點的三角形與SKIPIF1<0相似?【答案】(1)3秒或5秒;(2)SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)題意得到AP=4tcm,CQ=2tcm,AC=20cm,CP=(20-4t)cm,根據(jù)三角形的面積公式列方程即可得答案;(2)若運動的時間為ts,則CP=(20-4t)cm,CQ=2tcm,利用三角形的面積計算公式,即可得出S=20t-4t2,再結(jié)合各線段長度非負,即可得出t的取值范圍;(3)分①SKIPIF1<0和②SKIPIF1<0,利用相似三角形得出比例式,建立方程求解,即可得出結(jié)論.【詳解】(1)解:由運動知,AP=4tcm,CQ=2tcm,∵AC=20cm,∴CP=(20-4t)cm,在Rt△CPQ中,SKIPIF1<0,即SKIPIF1<0;∴SKIPIF1<0秒或SKIPIF1<0秒(2)由題意得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0的面積為SKIPIF1<0;(3)分兩種情況:①當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0;②當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.因此SKIPIF1<0或SKIPIF1<0時,以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的三角形與SKIPIF1<0相似.【點睛】本題考查了勾股定理,相似三角形的性質(zhì),用方程的思想解決問題是解本題的關(guān)鍵.4.(2023·全國·九年級專題練習(xí))如圖,SKIPIF1<0中,點D在SKIPIF1<0邊上,且SKIPIF1<0.(1)求證:SKIPIF1<0;(2)點E在SKIPIF1<0邊上,連接SKIPIF1<0交SKIPIF1<0于點F,且SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的度數(shù).(3)在(2)的條件下,若SKIPIF1<0,SKIPIF1<0的周長等于30,求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0=60°;(3)AF=11【分析】(1)根據(jù)三角形內(nèi)角與外角之間的關(guān)系建立等式,運用等量代換得出SKIPIF1<0,證得SKIPIF1<0;(2)作CH=BE,連接DH,根據(jù)角的數(shù)量關(guān)系證得SKIPIF1<0,再由三角形全等判定得△BDH≌△ABE,最后推出△DCH為等邊三角形,即可得出SKIPIF1<0=60°;(3)借助輔助線AO⊥CE,構(gòu)造直角三角形,并結(jié)合平行線構(gòu)造△BFE∽△BDH,建立相應(yīng)的等量關(guān)系式,完成等式變形和求值,即可得出AF的值.【詳解】(1)證明:∵∠BDC=90°+SKIPIF1<0∠ABD,∠BDC=∠ABD+∠A,∴
∠A=90°-SKIPIF1<0∠ABD.∵∠BDC+∠BDA=180°,∴∠BDA=180°-∠BDC=90°-SKIPIF1<0∠ABD.∴
∠A=∠BDA=90°-SKIPIF1<0∠ABD.∴DB=AB.解:(2)如圖1,作CH=BE,連接DH,∵∠AFD=∠ABC,∠AFD=∠ABD+∠BAE,∠ABC=∠ABD+∠DBC,∴∠BAE=∠DBC.∵由(1)知,∠BAD=∠BDA,又∵∠EAC=∠BAD-∠BAE,∠C=∠ADB-∠DBC,∴∠CAE=∠C.∴AE=CE.∵BE=CH,∴BE+EH=CH+EH.即BH=CE=AE.∵AB=BD,∴△BDH≌△ABE.∴BE=DH.∵BE=CD,∴CH=DH=CD.∴△DCH為等邊三角形.∴∠ACB=60°.(3)如圖2,過點A作AO⊥CE,垂足為O.∵DH∥AE,∴∠CAE=∠CDH=60°,∠AEC=∠DHC=60°.∴△ACE是等邊三角形.設(shè)AC=CE=AE=x,則BE=16-x,∵DH∥AE,∴△BFE∽△BDH.∴SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0.∵△ABF的周長等于30,即AB+BF+AF=AB+SKIPIF1<0+x-SKIPIF1<0=30,解得AB=16-SKIPIF1<0.在Rt△ACO中,AC=SKIPIF1<0,AO=SKIPIF1<0,∴BO=16-SKIPIF1<0.在Rt△ABO中,AO2+BO2=AB2,即SKIPIF1<0.解得SKIPIF1<0(舍去)SKIPIF1<0.∴AC=SKIPIF1<0.∴AF=11.【點睛】本題考查了三角形角的性質(zhì)、等邊三角形的性質(zhì)與判定以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,解題的關(guān)鍵是能熟練掌握三角形的性質(zhì)與全等判定并借助輔助線構(gòu)造特殊三角形的能力.【考向二(雙)8字型相似】例題:(2023·全國·九年級專題練習(xí))如圖,在菱形ABCD中,∠ADE、∠CDF分別交BC、AB于點E、F,DF交對角線AC于點M,且∠ADE=∠CDF.(1)求證:CE=AF;(2)連接ME,若SKIPIF1<0=SKIPIF1<0,AF=2,求SKIPIF1<0的長.【答案】(1)見解析(2)2【分析】(1)通過已知條件,易證△ADF≌△CDE,即可求得;(2)根據(jù)SKIPIF1<0=SKIPIF1<0,易求得BE和BF,根據(jù)已知條件可得SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,證明△AMF∽△CMD,SKIPIF1<0,再證明△ABC~△MEC,即可求出ME.【詳解】解:(1)∵四邊形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,SKIPIF1<0,∴△ADF≌△CDE,∴CE=AF.(2)∵四邊形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,設(shè)BE=BF=x,∵SKIPIF1<0=SKIPIF1<0,AF=2,∴SKIPIF1<0,解得x=SKIPIF1<0,∴BE=BF=SKIPIF1<0,∵SKIPIF1<0=SKIPIF1<0,且CE=AF,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴SKIPIF1<0,∴SKIPIF1<0,且∠ACB=∠ACB,∴△ABC~△MEC,
∴∠CAB=∠CME=∠ACB,∴ME=CE=2.【點睛】本題主要考查了三角形全等,三角形相似和菱形的判定和性質(zhì),熟練它們的判定和性質(zhì)是解答此題的關(guān)鍵.【變式訓(xùn)練】1.(2022春·九年級課時練習(xí))如圖,在平行四邊形ABCD中,點E是AD上一點,SKIPIF1<0,連接BE交AC于點G,延長BE交CD的延長線于點F,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先根據(jù)平行四邊形的性質(zhì)得到AB∥CD,則可判斷△ABG∽△CFG,△ABE∽△DFE,于是根據(jù)相似三角形的性質(zhì)和AE=2ED即可得結(jié)果.【詳解】解:∵四邊形ABCD為平行四邊形,∴AB∥CD,∴△ABG∽△CFG,∴SKIPIF1<0=SKIPIF1<0∵△ABE∽△DFE,∴SKIPIF1<0=SKIPIF1<0,∵AE=2ED,∴AB=2DF,∴SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0.故選:A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題.2.(2022春·陜西渭南·八年級統(tǒng)考期末)如圖在平行四邊形ABCD中,E是CD的中點,F(xiàn)是AE的中點,CF交BE于點G,若SKIPIF1<0,則SKIPIF1<0___.【答案】2【分析】延長CF、BA交于M,根據(jù)已知條件得出EF=AF,CE=SKIPIF1<0DC,根據(jù)平行四邊形的性質(zhì)得出DC∥AB,DC=AB,根據(jù)全等三角形的判定得出△CEF≌△MAF,根據(jù)全等三角形的性質(zhì)得出CE=AM,求出BM=3CE,根據(jù)相似三角形的判定得出△CEG∽△MBG,根據(jù)相似三角形的性質(zhì)得出比例式,再求出答案即可.【詳解】解:延長CF、BA交于M,∵E是CD的中點,F(xiàn)是AE的中點,∴EF=AF,CE=SKIPIF1<0DC,∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB,∴CE=SKIPIF1<0AB,∠ECF=∠M,在△CEF和△MAF中SKIPIF1<0,∴△CEF≌△MAF(AAS),∴CE=AM,∵CE=SKIPIF1<0AB,∴BM=3CE,∵DC∥AB,∴△CEG∽△MBG,∴SKIPIF1<0,∵BE=8,∴SKIPIF1<0,解得:GE=2,故答案為:2.【點睛】本題考查了平行線的性質(zhì),平行四邊形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定等知識點,能綜合運用知識點進行推理和計算是解此題的關(guān)鍵.3.(2022秋·北京房山·九年級統(tǒng)考期中)如圖,AD與BC交于O點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求CD的長.【答案】1.5【分析】由SKIPIF1<0,SKIPIF1<0可得出SKIPIF1<0,利用相似三角形的性質(zhì)可得出SKIPIF1<0,代入SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即可求出CD的長.【詳解】解:∵AD與BC交于O點,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.【點睛】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握相似三角形對應(yīng)邊成比例列式.4.(2023秋·安徽六安·九年級??计谀┤鐖D1,在Rt△ABC中,∠ACB=90°,AC=BC=1,D為AB上一點,連接CD,分別過點A、B作AN⊥CD,BM⊥CD.(1)求證:AN=CM;(2)若點D滿足BD:AD=2:1,求DM的長;(3)如圖2,若點E為AB中點,連接EM,設(shè)sin∠NAD=k,求證:EM=k.【答案】(1)見解析;(2)SKIPIF1<0;(3)見解析【分析】(1)證明△ACN≌△CBM(AAS),由全等三角形的性質(zhì)得出AN=CM;(2)證明△AND∽△BMD,由相似三角形的性質(zhì)得出SKIPIF1<0,設(shè)AN=x,則BM=2x,由(1)知AN=CM=x,BM=CN=2x,由勾股定理得出x=SKIPIF1<0,則可得出答案;(3)延長ME,AN相交于點H,證明△AHE≌△BME(AAS),得出AH=BM,證得HN=MN,過點E作EG⊥BM于點G,由等腰直角三角形的性質(zhì)得出答案.【詳解】(1)證明:∵AN⊥CD,BM⊥CD,∴∠ANC=90°,∠BMC=90°,又∠ACB=90°,∴∠ACN+∠BCM=∠BCM+∠CBM=90°,∴∠ACN=∠CBM,又∵AC=BC,∴△ACN≌△CBM(AAS),∴AN=CM;(2)解:∵∠AND=∠BMD,∠ADN=∠BDM,∴△AND∽△BMD,∴SKIPIF1<0,設(shè)AN=x,則BM=2x,由(1)知AN=CM=x,BM=CN=2x,∵AN2+CN2=AC2,∴x2+(2x)2=12,∴x=SKIPIF1<0,∴CM=SKIPIF1<0,CN=SKIPIF1<0,∴MN=SKIPIF1<0,∴DM=SKIPIF1<0=SKIPIF1<0;(3)解:延長ME,AN相交于點H,∵E為AB的中點,∴AE=BE,∵∠ANM=90°,∠BMN=90°,∴AN∥BM,∴∠HAE=∠MBE,∠AHE=∠BME,∴△AHE≌△BME(AAS),∴AH=BM,又∵BM=CN,CM=AN,∴CN=AH,∴MN=HN,∴∠HMN=45°,∴∠EMB=45°,過點E作EG⊥BM于點G,∵sin∠NAD=k,∠NAD=∠EBG,∴sin∠EBG=SKIPIF1<0=k,又∵AC=BC=1,∴AB=SKIPIF1<0,∴BE=SKIPIF1<0,∴EG=SKIPIF1<0k,∴EM=SKIPIF1<0EG=SKIPIF1<0k=k.【點睛】本題是三角形綜合題,考查了全等三角形的判定與性質(zhì),銳角三角函數(shù)的定義,等腰直角三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.5.(2022·廣東佛山·??既#┤鐖D1,SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0的內(nèi)角SKIPIF1<0、SKIPIF1<0的平分線,過點SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0的延長線于點SKIPIF1<0.(1)求證:SKIPIF1<0;(2)如圖2,如果SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的值;(3)如果SKIPIF1<0是銳角,且SKIPIF1<0與SKIPIF1<0相似,求SKIPIF1<0的度數(shù),并直接寫出SKIPIF1<0的值.【答案】(1)見解析(2)SKIPIF1<0(3)SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0【分析】(1)由題意:SKIPIF1<0,證明SKIPIF1<0即可解決問題.(2)延長SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.證明SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0.(3)因為SKIPIF1<0與SKIPIF1<0相似,SKIPIF1<0,所以SKIPIF1<0中必有一個內(nèi)角為SKIPIF1<0因為SKIPIF1<0是銳角,推出SKIPIF1<0.接下來分兩種情形分別求解即可.【詳解】(1)證明:如圖1中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)解:延長SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(3)SKIPIF1<0與SKIPIF1<0相似,SKIPIF1<0,SKIPIF1<0中必有一個內(nèi)角為SKIPIF1<0SKIPIF1<0是銳角,SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0.②當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相似,SKIPIF1<0,此時SKIPIF1<0.綜上所述,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.【點睛】本題屬于相似形綜合題,考查了相似三角形的判定和性質(zhì),平行線的判定和性質(zhì),銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.【考向三母子型相似】例題:(2022秋·全國·八年級專題練習(xí))定義:如圖,若點P在三角形的一條邊上,且滿足SKIPIF1<0,則稱點P為這個三角形的“理想點”.(1)如圖①,若點D是SKIPIF1<0的邊AB的中點,SKIPIF1<0,SKIPIF1<0,試判斷點D是不是SKIPIF1<0的“理想點”,并說明理由;(2)如圖②,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若點D是SKIPIF1<0的“理想點”,求CD的長.【答案】(1)SKIPIF1<0為SKIPIF1<0的理想點,理由見解析(2)SKIPIF1<0或SKIPIF1<0【分析】(1)由已知可得SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0,可證點SKIPIF1<0是SKIPIF1<0的“理想點”;(2)由SKIPIF1<0是SKIPIF1<0的“理想點”,分三種情況:當(dāng)SKIPIF1<0在SKIPIF1<0上時,SKIPIF1<0是SKIPIF1<0邊上的高,根據(jù)面積法可求SKIPIF1<0長度;當(dāng)SKIPIF1<0在SKIPIF1<0上時,SKIPIF1<0,對應(yīng)邊成比例即可求SKIPIF1<0長度;SKIPIF1<0不可能在SKIPIF1<0上.(1)解:點SKIPIF1<0是SKIPIF1<0的“理想點”,理由如下:SKIPIF1<0是SKIPIF1<0中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0是SKIPIF1<0的“理想點”;(2)①SKIPIF1<0在SKIPIF1<0上時,如圖:SKIPIF1<0是SKIPIF1<0的“理想點”,SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是SKIPIF1<0邊上的高,當(dāng)SKIPIF1<0時,同理可證SKIPIF1<0,即SKIPIF1<0是SKIPIF1<0邊上的高,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,②SKIPIF1<0,SKIPIF1<0,SKIPIF1<0有SKIPIF1<0,SKIPIF1<0“理想點”SKIPIF1<0不可能在SKIPIF1<0邊上,③SKIPIF1<0在SKIPIF1<0邊上時,如圖:SKIPIF1<0是SKIPIF1<0的“理想點”,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,綜上所述,點SKIPIF1<0是SKIPIF1<0的“理想點”,SKIPIF1<0的長為SKIPIF1<0或SKIPIF1<0.【點睛】本題主要考查了相似三角形、勾股定理等知識,解題的關(guān)鍵是理解“理想點”的定義.【變式訓(xùn)練】1.(2022秋·黑龍江哈爾濱·九年級??计谥校┤鐖D,SKIPIF1<0中,點SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則線段SKIPIF1<0的長為___________.【答案】SKIPIF1<0【分析】延長SKIPIF1<0到SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0,可得等腰SKIPIF1<0和等腰SKIPIF1<0,SKIPIF1<0,再證明SKIPIF1<0,利用相似三角形對應(yīng)邊成比例即可求出SKIPIF1<0.【詳解】解:如圖所示,延長SKIPIF1<0到SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,故答案為:SKIPIF1<0.【點睛】本題主要考查了等腰三角形性質(zhì)和相似三角形的判定和性質(zhì),利用已知二倍角關(guān)系①構(gòu)造等腰SKIPIF1<0和②構(gòu)造等腰SKIPIF1<0是解題關(guān)鍵.2.(2022秋·安徽蚌埠·九年級校考期中)如圖,在△ABC中,D為BC邊上的一點,且AC=SKIPIF1<0,CD=4,BD=2,求證:△ACD∽△BCA.【答案】證明見解析.【分析】根據(jù)AC=SKIPIF1<0,CD=4,BD=2,可得SKIPIF1<0,根據(jù)∠C=∠C,即可證明結(jié)論.【詳解】解:∵AC=SKIPIF1<0,CD=4,BD=2∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∵∠C=∠C∴△ACD∽△BCA.【點睛】本題考查了相似三角形的性質(zhì)和判定,掌握知識點是解題關(guān)鍵.3.(2022秋·安徽蚌埠·九年級??计谥校┤鐖D,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0邊上的高,SKIPIF1<0的平分線SKIPIF1<0分別交SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的面積,(3)若SKIPIF1<0,請直接寫出SKIPIF1<0的值為______.【答案】(1)證明見解析(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)利用同角的余角相等可得SKIPIF1<0,再由角平分線的定義可得SKIPIF1<0,然后根據(jù)相似三角形的判定即可得證;(2)先根據(jù)SKIPIF1<0定理可證SKIPIF1<0,推出SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,利用勾股定理SKIPIF1<0,然后根據(jù)相似三角形的性質(zhì)求解即可得;(3)由SKIPIF1<0和SKIPIF1<0推出SKIPIF1<0,得到SKIPIF1<0,再根據(jù)一元二次方程的解法求解即可得.【詳解】(1)證明:SKIPIF1<0,SKIPIF1<0為SKIPIF1<0邊上的高,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的平分線,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(2)解:在SKIPIF1<0中,SKIPIF1<0,如圖,過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的平分線,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的面積為SKIPIF1<0.(3)解:如上圖,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(不符題意,舍去),∴SKIPIF1<0,故答案為:SKIPIF1<0.【點睛】本題考查了相似三角形的判定與性質(zhì)、角平分線的性質(zhì)定理、解直角三角形的應(yīng)用、一元二次方程的應(yīng)用等知識點,熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.4.(2022·江蘇·九年級專題練習(xí))如圖:在矩形ABCD中,SKIPIF1<0,SKIPIF1<0,動點Р以SKIPIF1<0的速度從A點出發(fā),沿AC向C點移動,同時動點Q以SKIPIF1<0的速度從點C出發(fā),沿CB向點B移動,設(shè)P、Q兩點移動的時間為t秒SKIPIF1<0.(1)SKIPIF1<0______m,SKIPIF1<0______m,SKIPIF1<0_____m(用含t的代數(shù)式表示)(2)t為多少秒時,以P、Q、C為頂點的三角形與SKIPIF1<0相似?(3)在P、Q兩點移動過程中,四邊形ABQP與SKIPIF1<0CPQ的面積能否相等?若能,求出此時t的值;若不能,請說明理由.【答案】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)四邊形ABQP與SKIPIF1<0CPQ的面積不相等,理由見解析【分析】(1)根據(jù)矩形和勾股定理的性質(zhì),計算得SKIPIF1<0,結(jié)合題意,根據(jù)代數(shù)式的性質(zhì)計算,即可得到答案;(2)結(jié)合(1)的結(jié)論,根據(jù)相似三角形的性質(zhì)列方程并求解,即可得到答案;(3)過點P作SKIPIF1<0,交BC于點M,通過證明SKIPIF1<0,根據(jù)相似比的性質(zhì),推導(dǎo)得SKIPIF1<0,根據(jù)題意列一元二次方程,根據(jù)一元二次方程判別式的性質(zhì)分析,即可得到答案.【詳解】(1)∵矩形ABCD中,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0m∵動點Р以SKIPIF1<0的速度從A點出發(fā),沿AC向C點移動,同時動點Q以SKIPIF1<0的速度從點C出發(fā),沿CB向點B移動,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0∴SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)根據(jù)(1)的結(jié)論,得SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0∴當(dāng)SKIPIF1<0,或SKIPIF1<0時,以P、Q、C為頂點的三角形與SKIPIF1<0相似當(dāng)SKIPIF1<0時,得SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0;當(dāng)SKIPIF1<0時,得SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0;(3)如圖,過點P作SKIPIF1<0,交BC于點M∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵四邊形ABQP與SKIPIF1<0CPQ的面積相等,SKIPIF1<0四邊形ABQP面積SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0無解,即四邊形ABQP與SKIPIF1<0CPQ的面積不相等.【點睛】本題考查了代數(shù)式、相似三角形、一元二次方程、一元一次方程的知識;解題的關(guān)鍵是熟練掌握相似三角形、一元二次方程判別式的性質(zhì),從而完成求解.【考向四旋轉(zhuǎn)相似】例題:(2022秋·貴州貴陽·九年級??计谥校┤鐖D1,在SKIPIF1<0中,SKIPIF1<0,點SKIPIF1<0分別是邊SKIPIF1<0的中點,連接SKIPIF1<0.將SKIPIF1<0繞點SKIPIF1<0逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為SKIPIF1<0.(1)問題發(fā)現(xiàn)①當(dāng)SKIPIF1<0時,SKIPIF1<0=______;②當(dāng)SKIPIF1<0時,SKIPIF1<0=______;(2)拓展探究試判斷當(dāng)SKIPIF1<0時,SKIPIF1<0的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決當(dāng)SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)至SKIPIF1<0三點在同一條直線上時,求線段SKIPIF1<0的長.【答案】(1)①SKIPIF1<0;②SKIPIF1<0(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,大小沒有變化,證明見解析(3)線段SKIPIF1<0的長為SKIPIF1<0或SKIPIF1<0【分析】(1)①先利用勾股定理可得SKIPIF1<0,再根據(jù)線段中點的定義可得SKIPIF1<0,由此即可得;②先畫出圖形,根據(jù)旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,再利用勾股定理可得SKIPIF1<0,然后根據(jù)線段和差分別求出SKIPIF1<0的長,由此即可得;(2)根據(jù)相似三角形的判定證出SKIPIF1<0,再根據(jù)相似三角形的性質(zhì)即可得;(3)分①點SKIPIF1<0在SKIPIF1<0的延長線上和②點SKIPIF1<0在線段SKIPIF1<0上,利用勾股定理求出SKIPIF1<0,從而可得SKIPIF1<0的長,再根據(jù)SKIPIF1<0求解即可得.【詳解】(1)解:①當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0分別是邊SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0;②如圖1,SKIPIF1<0點SKIPIF1<0分別是邊SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖,當(dāng)SKIPIF1<0時,由旋轉(zhuǎn)的性質(zhì)得:SKIPIF1<0的大小不變,仍等于SKIPIF1<0,SKIPIF1<0長度不變,仍等于2,SKIPIF1<0的長度不變,仍等于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0.(2)解:當(dāng)SKIPIF1<0時,SKIPIF1<0,大小沒有變化,證明如下:由旋轉(zhuǎn)的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(3)解:①如圖,當(dāng)點SKIPIF1<0在SKIPIF1<0的延長線上時,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;②如圖,當(dāng)點SKIPIF1<0在線段SKIPIF1<0上時,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;綜上,線段SKIPIF1<0的長為SKIPIF1<0或SKIPIF1<0.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、三角形中位線定理等知識點,較難的是題(3),正確分兩種情況討論是解題關(guān)鍵.【變式訓(xùn)練】1.(2023·浙江寧波·??家荒#┤鐖D1,在SKIPIF1<0中,SKIPIF1<0,點D,E分別是SKIPIF1<0的中點.把SKIPIF1<0繞點B旋轉(zhuǎn)一定角度,連結(jié)SKIPIF1<0.(1)如圖2,當(dāng)線段SKIPIF1<0在SKIPIF1<0內(nèi)部時,求證:SKIPIF1<0.(2)當(dāng)點D落在直線SKIPIF1<0上時,請畫出圖形,并求SKIPIF1<0的長.(3)當(dāng)SKIPIF1<0面積最大時,請畫出圖形,并求出此時SKIPIF1<0的面積.【答案】(1)見解析(2)見解析;SKIPIF1<0(3)見解析,SKIPIF1<0【分析】(1)根據(jù)點D,E分別是SKIPIF1<0的中點,得到SKIPIF1<0,再根據(jù)旋轉(zhuǎn),得到SKIPIF1<0,即可得證;(2)勾股定理定理求出SKIPIF1<0的長,中位線定理得到SKIPIF1<0,進而得到SKIPIF1<0,根據(jù)旋轉(zhuǎn),得到SKIPIF1<0,推出SKIPIF1<0,利用勾股定理求出SKIPIF1<0的長;(3)設(shè)點E到SKIPIF1<0的距離為h,判斷出h最大SKIPIF1<0,SKIPIF1<0的面積最大,過點D作SKIPIF1<0于H,證明SKIPIF1<0,利用對應(yīng)邊對應(yīng)成比例,求出SKIPIF1<0的長,利用SKIPIF1<0進行求解即可.【詳解】(1)證明:∵點D,E分別是SKIPIF1<0的中點,∴SKIPIF1<0∴SKIPIF1<0,
由旋轉(zhuǎn)知,SKIPIF1<0,∴SKIPIF1<0;(2)解:如圖,∵SKIPIF1<0,∴SKIPIF1<0,由(1)圖∵點D,E分別是SKIPIF1<0的中點,∴SKIPIF1<0,∴SKIPIF1<0,∵點D落在SKIPIF1<0上,∴SKIPIF1<0,由(1)知,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,根據(jù)勾股定理得,SKIPIF1<0;(3)解:如圖,設(shè)點E到SKIPIF1<0的距離為h,則SKIPIF1<0,要SKIPIF1<0的面積最大,則h最大,即SKIPIF1<0時,此時,h最大SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由旋轉(zhuǎn)知,SKIPIF1<0,∴SKIPIF1<0,過點D作SKIPIF1<0于H,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在題干圖1中,∵點D,E分別是SKIPIF1<0的中點,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【點睛】本題考查相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),三角形的中位線,勾股定理.本題的綜合性較強,難度較大,解題的關(guān)鍵是根據(jù)題意,正確的畫出圖形.2.(2022·山東棗莊·校考模擬預(yù)測)如圖1,在等腰直角三角形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.點SKIPIF1<0是SKIPIF1<0的中點,以SKIPIF1<0為邊作正方形SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.將正方形SKIPIF1<0繞點SKIPIF1<0順時針旋轉(zhuǎn),旋轉(zhuǎn)角為SKIPIF1<0(SKIPIF1<0).(1)如圖2,在旋轉(zhuǎn)過程中,①判斷SKIPIF1<0與SKIPIF1<0是否全等,并說明理由;②當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,求SKIPIF1<0的長.(2)如圖3,延長SKIPIF1<0交直線SKIPIF1<0于點SKIPIF1<0.求證:SKIPIF1<0;【答案】(1)①SKIPIF1<0,理由見解析;②SKIPIF1<0(2)證明見解析【分析】(1)①根據(jù)“邊角邊”,證明SKIPIF1<0即可;②過點SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,根據(jù)①中SKIPIF1<0,SKIPIF1<0,得出SKIPIF1<0,再根據(jù)三線合一的性質(zhì),得出SKIPIF1<0,再根據(jù)勾股定理,得出SKIPIF1<0,再根據(jù)SKIPIF1<0,得出SKIPIF1<0,再根據(jù)相似三角形的性質(zhì),計算即可得出答案;(2)設(shè)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,根據(jù)(1)SKIPIF1<0,得出SKIPIF1<0,再根據(jù)角之間的數(shù)量關(guān)系,得出SKIPIF1<0,再根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物聯(lián)網(wǎng)設(shè)備安全認證標準研究-洞察分析
- 移動端頁面加載速度提升-洞察分析
- 新型搪瓷材料應(yīng)用研究-洞察分析
- 《牢筑保密長城》課件
- 《C概率及其運算》課件
- 《爬升模板施工》課件
- 《產(chǎn)品設(shè)計手板工藝》課件
- 從科研到應(yīng)用農(nóng)業(yè)科技園區(qū)的技術(shù)轉(zhuǎn)移
- 辦公技術(shù)的演進及企業(yè)如何借助對沖基金保持競爭力
- 親子閱讀一種有效的互動方式
- 2022年內(nèi)蒙古行政執(zhí)法人員資格認證考試題庫【典型題 真題庫】
- ISO 56007-2023創(chuàng)新管理 管理機會和想法的工具和方法 指南雷澤佳譯-2024
- 山東省煙臺市2024年中考物理試題(含答案)
- 陜西省2024年中考語文真題試卷【附答案】
- 廈門市翔安區(qū)2022-2023學(xué)年七年級上學(xué)期期末地理試題【帶答案】
- 川崎病診治專家共識
- 12G614-1 砌體填充墻結(jié)構(gòu)構(gòu)造
- 大學(xué)助農(nóng)直播創(chuàng)業(yè)計劃書
- JTS-196-1-2009海港集裝箱碼頭建設(shè)標準
- 《經(jīng)濟學(xué)原理》題庫(含參考答案)
- 互聯(lián)網(wǎng)+大學(xué)生創(chuàng)新創(chuàng)業(yè)大賽“智慧老人”健康系統(tǒng)計劃書
評論
0/150
提交評論