版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
重慶市巫山縣2025屆數(shù)學九上期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列圖形:①國旗上的五角星,②有一個角為60°的等腰三角形,③一個半徑為π的圓,④兩條對角線互相垂直平分的四邊形,⑤函數(shù)y=的圖象,其中既是軸對稱又是中心對稱的圖形有()A.有1個 B.有2個 C.有3個 D.有4個2.在平面直角坐標系中,正方形,,,,,按如圖所示的方式放置,其中點在軸上,點,,,,,,…在軸上,已知正方形的邊長為1,,,…,則正方形的邊長是()A. B. C. D.3.用配方法解方程時,配方結(jié)果正確的是()A. B.C. D.4.已知三角形的面積一定,則它底邊a上的高h與底邊a之間的函數(shù)關系的圖象大致是()A. B. C. D.5.甲、乙、丙、丁四人各進行了次射擊測試,他們的平均成績相同,方差分別是則射擊成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁6.若x=﹣1是關于x的一元二次方程ax2﹣bx﹣2019=0的一個解,則1+a+b的值是()A.2017 B.2018 C.2019 D.20207.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(﹣3,0),其對稱軸為直線x=﹣,結(jié)合圖象分析下列結(jié)論:①abc>0;②3a+c>0;③當x<0時,y隨x的增大而增大:④若m,n(m<n)為方程a(x+3)(x﹣2)+3=0的兩個根,則m<﹣3且n>2;⑤<0,其中正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個8.通過對《一元二次方程》全章的學習,同學們掌握了一元二次方程的三種解法:配方法、公式法、因式分解法,其實,每種解法都是把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解,體現(xiàn)的基本思想是()A.轉(zhuǎn)化 B.整體思想 C.降次 D.消元9.如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為()(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米 B.6.3米 C.7.1米 D.9.2米10.如圖5,一棵大樹在一次強臺風中于離地面5米處折斷倒下,倒下部分與地面成30°夾角,這棵大樹在折斷前的高度為()A.10米 B.15米 C.25米 D.30米二、填空題(每小題3分,共24分)11.已知圓O的直徑為4,點M到圓心O的距離為3,則點M與⊙O的位置關系是_____.12.如圖,在Rt△ABC中,∠ACB=90°,∠A=α,將△ABC繞點C按順時針方向旋轉(zhuǎn)后得到△EDC,此時點D在AB邊上,則旋轉(zhuǎn)角的大小為.13.現(xiàn)有兩個不透明的袋子,一個裝有2個紅球、1個白球,另一個裝有1個黃球、2個紅球,這些球除顏色外完全相同.從兩個袋子中各隨機摸出1個球,摸出的兩個球顏色相同的概率是_____.14.已知△ABC與△DEF相似,相似比為2:3,如果△ABC的面積為4,則△DEF的面積為_____.15.從長度為2cm、4cm、6cm、8cm的4根木棒中隨機抽取一根,能與長度為3cm和5cm的木棒圍成三角形的概率為_____.16.已知,則的值是_____________.17.將拋物向右平移個單位,得到新的解析式為___________.18.若,則=___________.三、解答題(共66分)19.(10分)解下列方程:20.(6分)已知關于x的方程x2-(2k-1)x+k2-2k+3=0有兩個不相等的實數(shù)根.(1)求實數(shù)k的取值范圍.(2)設方程的兩個實數(shù)根分別為x1,x2,是否存在這樣的實數(shù)k,使得|x1|-|x2|=成立?若存在,求出這樣的k值;若不存在,請說明理由.21.(6分)如圖,(1)某學?!爸腔鄯綀@”數(shù)學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2),請回答:∠ADB=°,AB=.(2)請參考以上思路解決問題:如圖3,在四邊形ABCD中,對角線AC、BD相交于點O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.22.(8分)如圖,已知拋物線與軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,直線經(jīng)過點C,與軸交于點D.(1)求該拋物線的函數(shù)關系式;(2)點P是(1)中的拋物線上的一個動點,設點P的橫坐標為t(0<t<3).①求△PCD的面積的最大值;②是否存在點P,使得△PCD是以CD為直角邊的直角三角形?若存在,求點P的坐標;若不存在,請說明理由.23.(8分)如圖,在平面直角坐標系中,已知三個頂點的坐標分別是,,.(1)以點為位似中心,將縮小為原來的得到,請在軸右側(cè)畫出;(2)的正弦值為.24.(8分)如圖1(注:與圖2完全相同),在直角坐標系中,拋物線經(jīng)過點三點,,.(1)求拋物線的解析式和對稱軸;(2)是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(請在圖1中探索);(3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標,若不存在請說明理由.(請在圖2中探索)25.(10分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:(1)在圖1中作出圓心O;(2)在圖2中過點B作BF∥AC.26.(10分)如圖,已知二次函數(shù)y=ax1+4ax+c(a≠0)的圖象交x軸于A、B兩點(A在B的左側(cè)),交y軸于點C.一次函數(shù)y=﹣x+b的圖象經(jīng)過點A,與y軸交于點D(0,﹣3),與這個二次函數(shù)的圖象的另一個交點為E,且AD:DE=3:1.(1)求這個二次函數(shù)的表達式;(1)若點M為x軸上一點,求MD+MA的最小值.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義可得答案.【詳解】解:①國旗上的五角星,是軸對稱圖形,不是中心對稱圖形;②有一個角為60°的等腰三角形,是軸對稱圖形,是中心對稱圖形;③一個半徑為π的圓,是軸對稱圖形,是中心對稱圖形;④兩條對角線互相垂直平分的四邊形,是軸對稱圖形,是中心對稱圖形;⑤函數(shù)y=的圖象,不是軸對稱圖形,是中心對稱圖形;既是軸對稱又是中心對稱的圖形有3個,故選:C.【點睛】此題主要考查了軸對稱圖形和中心對稱圖形,以及反比例函數(shù)圖象和線段垂直平分線,關鍵是掌握軸對稱圖形和中心對稱圖形定義.2、D【分析】利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關系得出正方形邊長,進而即可找到規(guī)律得出答案.【詳解】∵正方形的邊長為1,,,…同理可得故正方形的邊長為故選:D.【點睛】本題主要考查正方形的性質(zhì)和銳角三角函數(shù),利用正方形的性質(zhì)和銳角三角函數(shù)找出規(guī)律是解題的關鍵.3、A【分析】利用配方法把方程變形即可.【詳解】用配方法解方程x2﹣6x﹣8=0時,配方結(jié)果為(x﹣3)2=17,故選A.【點睛】本題考查了解一元二次方程﹣配方法,熟練掌握配方法解一元二次方程的基本步驟是解本題的關鍵.4、D【解析】先寫出三角形底邊a上的高h與底邊a之間的函數(shù)關系,再根據(jù)反比例函數(shù)的圖象特點得出.【詳解】解:已知三角形的面積s一定,
則它底邊a上的高h與底邊a之間的函數(shù)關系為S=ah,即;
該函數(shù)是反比例函數(shù),且2s>0,h>0;
故其圖象只在第一象限.
故選:D.【點睛】本題考查反比例函數(shù)的圖象特點:反比例函數(shù)的圖象是雙曲線,與坐標軸無交點,當k>0時,它的兩個分支分別位于第一、三象限;當k<0時,它的兩個分支分別位于第二、四象限.5、C【分析】根據(jù)方差的意義,即可得到答案.【詳解】∵丙的方差最小,∴射擊成績最穩(wěn)定的是丙,故選C.【點睛】本題主要考查方差的意義,掌握方差越小,一組數(shù)據(jù)越穩(wěn)定,是解題的關鍵.6、D【分析】根據(jù)x=-1是關于x的一元二次方程ax2﹣bx﹣2019=0的一個解,可以得到a+b的值,從而可以求得所求式子的值.【詳解】解:∵x=﹣1是關于x的一元二次方程ax2﹣bx﹣2019=0的一個解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故選:D.【點睛】本題考查一元二次方程的解,解答本題的關鍵是明確題意,求出所求式子的值.7、C【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),利用二次函數(shù)的性質(zhì)可以判斷各個小題中的結(jié)論是否正確,從而可以解答本題.【詳解】∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1),其對稱軸為直線x,∴拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1)和(2,1),且,∴a=b,由圖象知:a<1,c>1,b<1,∴abc>1,故結(jié)論①正確;∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1),∴9a﹣3b+c=1.∵a=b,∴c=﹣6a,∴3a+c=﹣3a>1,故結(jié)論②正確;∵當x時,y隨x的增大而增大;當x<1時,y隨x的增大而減小,故結(jié)論③錯誤;∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1)和(2,1),∴y=ax2+bx+c=a(x+3)(x﹣2).∵m,n(m<n)為方程a(x+3)(x﹣2)+3=1的兩個根,∴m,n(m<n)為方程a(x+3)(x﹣2)=﹣3的兩個根,∴m,n(m<n)為函數(shù)y=a(x+3)(x﹣2)與直線y=﹣3的兩個交點的橫坐標,結(jié)合圖象得:m<﹣3且n>2,故結(jié)論④成立;∵當x時,y1,∴1.故結(jié)論⑤正確.故選:C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠1),二次項系數(shù)a決定拋物線的開口方向和大小:當a>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>1),對稱軸在y軸左;當a與b異號時(即ab<1),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(1,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>1時,拋物線與x軸有2個交點;△=b2﹣4ac=1時,拋物線與x軸有1個交點;△=b2﹣4ac<1時,拋物線與x軸沒有交點.8、C【分析】根據(jù)“每種解法都是把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解”進行判斷即可.【詳解】每種解法都是把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解,也就是“降次”,故選:C.【點睛】本題考查一元二次方程解法的理解,讀懂題意是關鍵.9、A【解析】如圖,延長DE交AB延長線于點P,作CQ⊥AP于點Q,∵CE∥AP,∴DP⊥AP,∴四邊形CEPQ為矩形,∴CE=PQ=2,CQ=PE,∵i=,∴設CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=?2(舍),則CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP=≈13.1,∴AB=AP?BQ?PQ=13.1?6?2=5.1,故選A.點睛:此題考查了俯角與坡度的知識.注意構(gòu)造所給坡度和所給銳角所在的直角三角形是解決問題的難點,利用坡度和三角函數(shù)求值得到相應線段的長度是解決問題的關鍵.10、B【分析】如圖,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根據(jù)題意找到CA=5米,由此即可求出AB,也就求出了大樹在折斷前的高度.【詳解】解:如圖,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以這棵大樹在折斷前的高度為15米.故選B.【點睛】本題主要利用定理--在直角三角形中30°的角所對的直角邊等于斜邊的一半,解題關鍵是善于觀察題目的信息,利用信息解決問題.二、填空題(每小題3分,共24分)11、在圓外【分析】根據(jù)由⊙O的直徑為4,得到其半徑為2,而點M到圓心O的距離為3,得到點M到圓心O的距離大于圓的半徑,根據(jù)點與圓的位置關系即可判斷點M與⊙O的位置關系.【詳解】解:∵⊙O的直徑為4,∴⊙O的半徑為2,∵點M到圓心O的距離為3,∴∴點M與⊙O的位置關系是在圓外.故答案為:在圓外.【點睛】本題考查的是點與圓的位置關系,解決此類問題可通過比較點到圓心的距離d與圓半徑大小關系完成判定.12、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋轉(zhuǎn)的性質(zhì)可得:CB=CD,根據(jù)等邊對等角的性質(zhì)可得∠CDB=∠B=90°﹣α,然后由三角形內(nèi)角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋轉(zhuǎn)的性質(zhì)可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋轉(zhuǎn)角的大小為2α.13、【分析】列表得出所有等可能結(jié)果,從中找到兩個球顏色相同的結(jié)果數(shù),利用概率公式計算可得.【詳解】解:列表如下:黃紅紅紅(黃,紅)(紅,紅)(紅,紅)紅(黃,紅)(紅,紅)(紅,紅)白(黃,白)(紅,白)(紅,白)由表知,共有9種等可能結(jié)果,其中摸出的兩個球顏色相同的有4種結(jié)果,所以摸出的兩個球顏色相同的概率為,故答案為.【點睛】本題考查了列表法與樹狀圖的知識,解題的關鍵是能夠用列表或列樹狀圖將所有等可能的結(jié)果列舉出來,難度不大.14、1【解析】由△ABC與△DEF的相似,它們的相似比是2:3,根據(jù)相似三角形的面積比等于相似比的平方,即可得它們的面積比是4:1,又由△ABC的面積為4,即可求得△DEF的面積.【詳解】∵△ABC與△DEF的相似,它們的相似比是2:3,
∴它們的面積比是4:1,
∵△ABC的面積為4,
∴△DEF的面積為:4×=1.
故答案為:1.【點睛】本題考查的知識點是相似三角形的性質(zhì),解題關鍵是掌握相似三角形的面積比等于相似比的平方定理.15、【分析】根據(jù)三角形的三邊關系得出第三根木棒長度的取值范圍,再根據(jù)概率公式即可得出答案.【詳解】∵兩根木棒的長分別是3cm和5cm,∴第三根木棒的長度大于2cm且小于8cm,∴能圍成三角形的是:4cm、6cm的木棒,∴能圍成三角形的概率是:,故答案為.【點睛】本題主要考查三角形的三邊關系和概率公式,求出三角形的第三邊長的取值范圍,是解題的關鍵.16、【分析】設a=3k,則b=4k,代入計算即可.【詳解】設a=3k,則b=4k,∴.故答案為:.【點睛】本題考查了比例的性質(zhì).熟練掌握k值法是解答本題的關鍵.17、y=2(x-3)2+1【分析】利用拋物線的頂點坐標為(0,1),利用點平移的坐標變換規(guī)律得到平移后得到對應點的坐標為(3,1),然后根據(jù)頂點式寫出新拋物線的解析式.【詳解】解:∵
,
∴拋物線
的頂點坐標為
(0,1),把點
(0,1)
向右平移
3
個單位后得到對應點的坐標為
(3,1)
,
∴新拋物線的解析式為y=2(x-3)2+1.
故答案為y=2(x-3)2+1.【點睛】本題考查二次函數(shù)圖象與幾何變換,配方法,關鍵是先利用配方法得到拋物線的頂點坐標.18、【分析】根據(jù)題干信息,利用已知得出a=b,進而代入代數(shù)式求出答案即可.【詳解】解:∵,∴a=b,∴=.故答案為:.【點睛】本題主要考查比例的性質(zhì),正確得出a=b,并利用代入代數(shù)式求值是解題關鍵.三、解答題(共66分)19、x1=5,x2=1.【解析】移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】x2-10x+25=2(x-5),
(x-5)2-2(x-5)=0,
(x-5)(x-5-2)=0,
x-5=0,x-5-2=0,
x1=5,x2=1.【點睛】本題考查了解一元二次方程,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關鍵.20、(1)k>;(2)1.【分析】(1)由方程有兩個不相等的實數(shù)根知△>2,列出關于k的不等式求解可得;(2)由韋達定理知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k﹣1)2+1>2,可以判斷出x1>2,x2>2.將原式兩邊平方后把x1+x2、x1x2代入得到關于k的方程,求解可得.【詳解】解:(1)由題意知△>2,∴[﹣(2k﹣1)]2﹣1×1×(k2﹣2k+2)>2,整理得:1k﹣7>2,解得:k;(2)由題意知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k+1)2+1>2,∴x1,x2同號.∵x1+x2=2k﹣1>=,∴x1>2,x2>2.∵|x1|﹣|x2|,∴x1﹣x2,∴x12﹣2x1x2+x22=5,即(x1+x2)2﹣1x1x2=5,代入得:(2k﹣1)2﹣1(k2﹣2k+2)=5,整理,得:1k﹣12=2,解得:k=3.【點睛】本題考查了根與系數(shù)的關系及根的判別式,熟練掌握判別式的值與方程的根之間的關系及韋達定理是解題的關鍵.21、(1)80,8;(2)DC=8【分析】(1)根據(jù)平行線的性質(zhì)可得∠ADB=∠OAC=80°,即可證明△BOD∽△COA,可得,求出AD的長度,再根據(jù)角的和差關系得∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,即可得出AB=AD=8.(2)過點B作BE∥AD交AC于點E,通過證明△AOD∽△EOB,可得,根據(jù)線段的比例關系,可得AB=2BE,根據(jù)勾股定理求出BE的長度,再根據(jù)勾股定理求出DC的長度即可.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=80°,∵∠BOD=∠COA,∴△BOD∽△COA,∴∵AO=6,∴OD=AO=2,∴AD=AO+OD=6+2=8,∵∠BAD=20°,∠ADB=80°,∴∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,∴AB=AD=8,故答案為:80,8;(2)過點B作BE∥AD交AC于點E,如圖3所示:∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°,∵∠AOD=∠EOB,∴△AOD∽△EOB,∴∵BO:OD=1:3,∴∵AO=6,∴EO=AO=2,∴AE=AO+EO=6+2=8,∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE,在Rt△AEB中,BE2+AE2=AB2,即(8)2+BE2=(2BE)2,解得:BE=8,∴AB=AC=16,AD=3BE=24,在Rt△CAD中,AC2+AD2=DC2,即162+242=DC2,解得:DC=8.【點睛】本題考查了三角形的綜合問題,掌握平行線的性質(zhì)、相似三角形的性質(zhì)以及判定定理、勾股定理是解題的關鍵.22、(1);(2)①3;②或【分析】(1)根據(jù)直線解析式求出點C坐標,再用待定系數(shù)法求出拋物線的解析式;(2)①過點P作軸于點F,交DC于點E,用t表示出點P和點E的坐標,的面積用表示,求出最大值;②分兩種情況進行討論,或,都是去構(gòu)造相似三角形,利用對應邊成比例列式求出t的值,得到點P的坐標.【詳解】解:(1)令,則,求出,將A、B、C的坐標代入拋物線解析式,得,解得,∴;(2)①如圖,過點P作軸于點F,交DC于點E,設點P的坐標是,則點E的縱坐標為,將代入直線解析式,得,∴點E坐標是,∴,∴,∴面積的最大值是3;②是以CD為直角邊的直角三角形分兩種情況,第一種,,如圖,過點P作軸于點G,則,∴,即,整理得,解得,(舍去),∴;第二種,,如圖,過點P作軸于點H,則,∴,即,整理得,解得,(舍去),∴,綜上,點P的坐標是或.【點睛】本題考查二次函數(shù)的綜合,解題的關鍵是掌握待定系數(shù)法求解析式的方法,三角形面積的表示方法以及構(gòu)造相似三角形利用數(shù)形結(jié)合的思想求點坐標的方法.23、(1)見解析;(2)【分析】(1)連接、,分別取、、的中點即可畫出△,(2)利用正弦函數(shù)的定義可知.由,即可解決問題.【詳解】解:(1)連接OA、OC,分別取OA、OB、OC的中點、、,順次連接、、,△即為所求,如圖所示,(2),,,,.,.【點睛】本題考查位似變換、平移變換等知識,銳角三角函數(shù)等知識,解題的關鍵是掌握位似變換的定義和性質(zhì),并據(jù)此得出變換后的對應點.注意:記住銳角三角函數(shù)的定義,屬于中考??碱}型.24、(1),函數(shù)的對稱軸為:;(2)點;(3)存在,點的坐標為或.【分析】根據(jù)點的坐標可設二次函數(shù)表達式為:,由C點坐標即可求解;連接交對稱軸于點,此時的值為最小,即可求解;,則,將該坐標代入二次函數(shù)表達式即可求解.【詳解】解:根據(jù)點,的坐標設二次函數(shù)表達式為:,∵拋物線經(jīng)過點,則,解得:,拋物線的表達式為:,函數(shù)的對稱軸為:;連接交對稱軸于點,此時的值為最小,設BC的解析式為:,將點的坐標代入一次函數(shù)表達式:得:解得:直線的表達式為:,當時,,故點;存在,理由:四邊形是以為對角線且面積為的平行四邊形,則,點在第四象限,故:則,將該坐標代入二次函數(shù)表達式得:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南師范大學《工程估價與費用管理》2023-2024學年第一學期期末試卷
- 2025年度水路貨物運輸合同(含貨物保險、風險控制)6篇
- 二零二五年度工程車運輸合同管理范本3篇
- 2025年度智能辦公系統(tǒng)租賃服務合同范本3篇
- 2025年度綠色建筑商品房建筑工程施工監(jiān)管協(xié)議3篇
- 運營餐廳課程設計
- 勞動合同法對媒體行業(yè)從業(yè)者的管理探討
- 運動館親子訓練課程設計
- 檢修部副主任安全職責(4篇)
- 二零二五年度大型活動專用班車租賃合同3篇
- 2025年包鋼(集團)公司新員工招聘【941人】高頻重點提升(共500題)附帶答案詳解
- 七年級生物試卷分析3篇
- 粉末丁腈橡膠使用方法
- 大氣課程設計-—袋式除塵器
- 蘇科版七年級生物學(上)教學工作總結(jié)
- 阿特拉斯擰緊機技術(shù)方案
- 中國人民財產(chǎn)保險股份有限公司理賠稽查管理暫行辦法
- 鋼管、管件表面積計算公式(精編版)
- QGDW 11860-2018 抽水蓄能電站項目后評價技術(shù)標準
- 《小兒推拿》PPT課件(完整版)
- 國家基本藥物目錄(最新版)
評論
0/150
提交評論