版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山西省運城市重點中學2024年中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.12.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+33.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=4.如圖,直線AB、CD相交于點O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°5.一元二次方程2x2﹣3x+1=0的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根6.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π7.-sin60°的倒數(shù)為()A.-2 B. C.- D.-8.下列四個命題,正確的有()個.①有理數(shù)與無理數(shù)之和是有理數(shù)②有理數(shù)與無理數(shù)之和是無理數(shù)③無理數(shù)與無理數(shù)之和是無理數(shù)④無理數(shù)與無理數(shù)之積是無理數(shù).A.1 B.2 C.3 D.49.一元二次方程mx2+mx﹣=0有兩個相等實數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.210.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.11.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.12.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤二、填空題:(本大題共6個小題,每小題4分,共24分.)13.現(xiàn)有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.14.如圖,直線a∥b,∠BAC的頂點A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.15.如圖,已知長方體的三條棱AB、BC、BD分別為4,5,2,螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是_____.16.計算:()0﹣=_____.17.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.
18.某商場將一款品牌時裝按標價打九折出售,可獲利80%,這款商品的標價為1000元,則進價為________元。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購,經(jīng)調(diào)查:購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.求甲、乙兩種型號設備的價格;該公司經(jīng)預算決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有幾種購買方案;在(2)的條件下,已知甲型設備的產(chǎn)量為240噸/月,乙型設備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.20.(6分)在甲、乙兩個不透明的布袋里,都裝有3個大小、材質完全相同的小球,其中甲袋中的小球上分別標有數(shù)字1,1,2;乙袋中的小球上分別標有數(shù)字﹣1,﹣2,1.現(xiàn)從甲袋中任意摸出一個小球,記其標有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標有的數(shù)字為y,以此確定點M的坐標(x,y).請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標;求點M(x,y)在函數(shù)y=﹣2x21.(6分)計算:.22.(8分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a(chǎn)=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.23.(8分)對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.24.(10分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規(guī)在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.25.(10分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.26.(12分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.27.(12分)如圖,是菱形的對角線,,(1)請用尺規(guī)作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)在(1)條件下,連接,求的度數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關知識和勾股定理,屬于中等難度的題型.解決這個問題的關鍵是根據(jù)圓的知識得出點P的運動軌跡.2、D【解析】
直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關鍵.3、D【解析】【分析】直接利用根與系數(shù)的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質得到x1、x2異號,且負數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關系,熟練掌握相關內(nèi)容是解題的關鍵.4、C【解析】
根據(jù)對頂角性質、鄰補角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項錯誤;D、∠AOD與∠BOD是鄰補角,所以∠AOD+∠BOD=180°,此選項正確;故選C.【點睛】本題主要考查垂線、對頂角與鄰補角,解題的關鍵是掌握對頂角性質、鄰補角定義及垂線的定義.5、B【解析】試題分析:對于一元二次方程ax2+bx+c=0(a≠0),當△=6、D【解析】
點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點睛】本題考查了矩形的性質、特殊角的三角函數(shù)值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.7、D【解析】分析:根據(jù)乘積為1的兩個數(shù)互為倒數(shù),求出它的倒數(shù)即可.詳解:的倒數(shù)是.故選D.點睛:考查特殊角的三角函數(shù)和倒數(shù)的定義,熟記特殊角的三角函數(shù)值是解題的關鍵.8、A【解析】解:①有理數(shù)與無理數(shù)的和一定是有理數(shù),故本小題錯誤;②有理數(shù)與無理數(shù)的和一定是無理數(shù),故本小題正確;③例如=0,0是有理數(shù),故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數(shù),故本小題錯誤.故選A.點睛:本題考查的是實數(shù)的運算及無理數(shù)、有理數(shù)的定義,熟知以上知識是解答此題的關鍵.9、C【解析】
由方程有兩個相等的實數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.10、D【解析】
由旋轉的性質得到AB=BE,根據(jù)菱形的性質得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據(jù)三角函數(shù)的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉的性質,菱形的性質,等邊三角形的判定與性質,解直角三角形的應用等,熟練掌握和靈活運用相關的知識是解題的關鍵.11、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.12、C【解析】
根據(jù)二次函數(shù)的性質逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
設小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點睛】本題考查了二元一次方程組的應用.14、46【解析】試卷分析:根據(jù)平行線的性質和平角的定義即可得到結論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.15、61【解析】分析:要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答,注意此題展開圖后螞蟻的爬行路線有兩種,分別求出,選取最短的路程.詳解:如圖①:AM2=AB2+BM2=16+(5+2)2=65;如圖②:AM2=AC2+CM2=92+4=85;如圖:AM2=52+(4+2)2=61.∴螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是:61.故答案為:61.點睛:此題主要考查了平面展開圖,求最短路徑,解決此類題目的關鍵是把長方體的側面展開“化立體為平面”,用勾股定理解決.16、-1【解析】
本題需要運用零次冪的運算法則、立方根的運算法則進行計算.【詳解】由分析可得:()0﹣=1-2=﹣1.【點睛】熟練運用零次冪的運算法則、立方根的運算法則是本題解題的關鍵.17、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點:圓周角定理.18、500【解析】
設該品牌時裝的進價為x元,根據(jù)題意列出方程,求出方程的解得到x的值,即可得到結果.【詳解】解:設該品牌時裝的進價為x元,根據(jù)題意得:1000×90%-x=80%x,解得:x=500,則該品牌時裝的進價為500元.故答案為:500.【點睛】本題考查了一元一次方程的應用,找出題中的等量關系是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元.(2)有6種購買方案.(3)最省錢的購買方案為,選購甲型設備4臺,乙型設備6臺.【解析】
(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,根據(jù)購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元可列出方程組,解之即可;(2)設購買甲型設備臺,乙型設備臺,根據(jù)購買節(jié)省能源的新設備的資金不超過110萬元列不等式,解之確定m的值,即可確定方案;(3)因為公司要求每月的產(chǎn)量不低于2040噸,據(jù)此可得關于m的不等式,解之即可由m的值確定方案,然后進行比較,做出選擇即可.【詳解】(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,由題意得:,解得:,則甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元;(2)設購買甲型設備臺,乙型設備臺,則,∴,∵取非負整數(shù),∴,∴有6種購買方案;(3)由題意:,∴,∴為4或5,當時,購買資金為:(萬元),當時,購買資金為:(萬元),則最省錢的購買方案是選購甲型設備4臺,乙型設備6臺.【點睛】本題考查了二元一次方程組的應用,一元一次不等式的應用,弄清題意,找準等量關系、不等關系列出方程組與不等式是解題的關鍵.20、(1)樹狀圖見解析,則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】試題分析:(1)畫出樹狀圖,可求得所有等可能的結果;(2)由點M(x,y)在函數(shù)y=﹣2x試題解析:(1)樹狀圖如下圖:則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵點M(x,y)在函數(shù)y=﹣2x∴點M(x,y)在函數(shù)y=﹣2x的圖象上的概率為:2考點:列表法或樹狀圖法求概率.21、【解析】【分析】括號內(nèi)先進行通分,進行分式的加減法運算,然后再與括號外的分式進行分式乘除法運算即可.【詳解】原式===.【點睛】本題考查了分式的混合運算,熟練掌握有關分式的運算法則是解題的關鍵.22、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據(jù)可以求得的值,根據(jù)長方形的性質,可以求得點的坐標;
(2)根據(jù)題意點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動,可以得到當點移動4秒時,點的位置和點的坐標;
(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標是(4,6),故答案是:4,6,(4,6);(2)∵點P從原點出發(fā),以每秒2個單位長度的速度沿著O?C?B?A?O的線路移動,∴2×4=8,∵OA=4,OC=6,∴當點P移動4秒時,在線段CB上,離點C的距離是:8?6=2,即當點P移動4秒時,此時點P在線段CB上,離點C的距離是2個單位長度,點P的坐標是(2,6);(3)由題意可得,在移動過程中,當點P到x軸的距離為5個單位長度時,存在兩種情況,第一種情況,當點P在OC上時,點P移動的時間是:5÷2=2.5秒,第二種情況,當點P在BA上時,點P移動的時間是:(6+4+1)÷2=5.5秒,故在移動過程中,當點P到x軸的距離為5個單位長度時,點P移動的時間是2.5秒或5.5秒.23、詳見解析.【解析】試題分析:(1)根據(jù)定義分別求解即可求得答案;(1)①首先由函數(shù)y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,可得函數(shù)G的圖象關于x=m對稱,然后根據(jù)定義分別求得函數(shù)的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數(shù)y=x﹣1,令y=x,則x﹣1=x,無解;∴函數(shù)y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數(shù)的不變值為±1,q=1﹣(﹣1)=1.∵函數(shù)y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數(shù)y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數(shù)y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,∴函數(shù)G的圖象關于x=m對稱,∴G:y=.∵當x1﹣1x=x時,x3=2,x4=3;當(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當△<2,即m<﹣時,q=x4﹣x3=3;當△≥2,即m≥﹣時,x5=,x6=.①當﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當x5=x4時,m=1,當x6=x3時,m=3;當2<m<1時,x3=2(舍去),x4=3,此時2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當1≤m≤3時,x3=2(舍去),x4=3,此時2<x5<x4,x6>2,q=x4﹣x6<3;當m>3時,x3=2(舍去),x4=3(舍去),此時x5>3,x6<2,q=x5﹣x6>3(舍去);綜上所述:m的取值范圍為1≤m≤3或m<﹣.點睛:本題屬于二次函數(shù)的綜合題,考查了二次函數(shù)、反比例函數(shù)、一次函數(shù)的性質以及函數(shù)的對稱性.注意掌握分類討論思想的應用是解答此題的關鍵.24、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】
(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發(fā)現(xiàn)M在點D的位置時,滿足條件;如圖4,根據(jù)等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發(fā)現(xiàn),無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當⊙M與OB相切時,設切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發(fā)現(xiàn)⊙M1與直線OB有一個交點;∴當時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點睛】本題考查了等腰三角形的判定,有難度,本題通過數(shù)形結合的思想解決問題,解題的關鍵是熟練掌握已知一邊,作等腰三角形的畫法.25、(1)(2)證明見解析;(3)1.【解析】
(1)由PD切⊙O于點C,AD與過點C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質可得到,又因為tan∠ABC=,所以可得=,進而可得到=,設PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進而可建立關于k的方程,解方程求出k的值即可求出PC的長.【詳解】(1)證明:∵PD切⊙O于點C,∴OC⊥PD,又∵AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 非拉國家的獨立和振興課件 華東師大版
- 旅行團自愿不買擺渡車的協(xié)議書
- 創(chuàng)意目錄篇課件
- 《跟腱斷裂護理查房》課件
- 電機與電力拖動課件-第6章
- 2024年度版權維權合同范本2篇
- 2025年貴州貨運從業(yè)資格考試試題及答案大全解析
- 2024年度水穩(wěn)材料采購與知識產(chǎn)權保護合同3篇
- 2025年阿壩道路運輸從業(yè)人員資格考試內(nèi)容有哪些
- 《工作流程集合》課件
- 護理年終個人工作總結
- 電力行業(yè)用水管理制度
- 2025年1月“八省聯(lián)考”考前猜想卷數(shù)學試題01 含解析
- 《論教育》主要篇目課件
- 2022年軍隊文職統(tǒng)一考試《專業(yè)科目》管理學類-管理學試卷(含解析)
- 靜脈輸液治療的風險管理
- 中華人民共和國學前教育法
- 2024-2025學年五年級科學上冊第二單元《地球表面的變化》測試卷(教科版)
- 馬王衛(wèi)生院醫(yī)療質量提升攻堅年行動部署落實情況匯報
- 2023-2024部編版小學六年級《道德與法治》上冊全冊教案
- 《現(xiàn)代漢語》(增訂6版)筆記和課后習題(含考研真題)詳解
評論
0/150
提交評論