2025屆葫蘆島市老官卜中學數(shù)學九上期末聯(lián)考試題含解析_第1頁
2025屆葫蘆島市老官卜中學數(shù)學九上期末聯(lián)考試題含解析_第2頁
2025屆葫蘆島市老官卜中學數(shù)學九上期末聯(lián)考試題含解析_第3頁
2025屆葫蘆島市老官卜中學數(shù)學九上期末聯(lián)考試題含解析_第4頁
2025屆葫蘆島市老官卜中學數(shù)學九上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆葫蘆島市老官卜中學數(shù)學九上期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.2.國家規(guī)定存款利息的納稅辦法是:利息稅=利息×20%,銀行一年定期儲蓄的年利率為2.25%,今小王取出一年到期的本金和利息時,交納利息稅4.5元,則小王一年前存入銀行的錢為().A.1000元 B.977.5元 C.200元 D.250元3.兩個相鄰自然數(shù)的積是1.則這兩個數(shù)中,較大的數(shù)是()A.11 B.12 C.13 D.144.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,若AB=8,AE=1,則弦CD的長是()A. B.2 C.6 D.85.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚6.有x支球隊參加籃球比賽,每兩隊之間都比賽一場,共比賽了21場,則下列方程中符合題意的是()A.x(x﹣1)=21 B.x(x﹣1)=42C.x(x+1)=21 D.x(x+1)=427.已知,且α是銳角,則α的度數(shù)是()A.30° B.45° C.60° D.不確定8.如圖,在中,,過重心作、的垂線,垂足分別為、,則四邊形的面積與的面積之比為()A. B. C. D.9.如圖,在正方形中,點是對角線的交點,過點作射線分別交于點,且,交于點.給出下列結論:;C;四邊形的面積為正方形面積的;.其中正確的是()A. B. C. D.10.下列事件中,是必然事件的是()A.兩條線段可以組成一個三角形B.打開電視機,它正在播放動畫片C.早上的太陽從西方升起D.400人中有兩個人的生日在同一天二、填空題(每小題3分,共24分)11.已知拋物線,那么點P(-3,4)關于該拋物線的對稱軸對稱的點的坐標是______.12.如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數(shù)的圖象經(jīng)過點B,則k的值是_____.13.已知一元二次方程的兩根為、,則__.14.一個幾何體是由一些大小相同的小正方塊擺成的,其俯視圖與主視圖如圖所示,則組成這個幾何體的小正方塊最多有________.15.如圖示,在中,,,,點在內部,且,連接,則的最小值等于______.16.若⊙O的直徑是4,圓心O到直線l的距離為3,則直線l與⊙O的位置關系是_________.17.某品牌手機六月份銷售400萬部,七月份、八月份銷售量連續(xù)增長,八月份銷售量達到576萬部,則該品牌手機這兩個月銷售量的月平均增長率為_________.18.拋物線的頂點坐標是______________.三、解答題(共66分)19.(10分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P在⊙O上,弦PB與CD交于點F,且FC=FB.(1)求證:PD∥CB;(2)若AB=26,EB=8,求CD的長度.20.(6分)足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當銷售單價定為44元時,每天可售出300本,銷售單價每漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設每天銷售為本,銷售單價為元.(1)請直接寫出與之間的函數(shù)關系式和自變量的取值范圍;(2)將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤元最大?最大利潤是多少元?21.(6分)在平面內,給定不在同一直線上的點A,B,C,如圖所示.點O到點A,B,C的距離均等于a(a為常數(shù)),到點O的距離等于a的所有點組成圖形G,的平分線交圖形G于點D,連接AD,CD.(1)求證:AD=CD;(2)過點D作DEBA,垂足為E,作DFBC,垂足為F,延長DF交圖形G于點M,連接CM.若AD=CM,求直線DE與圖形G的公共點個數(shù).22.(8分)已知9a2-4b2=0,求代數(shù)式--的值.23.(8分)有這樣一個問題,如圖1,在等邊中,,為的中點,,分別是邊,上的動點,且,若,試求的長.愛鉆研的小峰同學發(fā)現(xiàn),可以通過幾何與函數(shù)相結合的方法來解決這個問題,下面是他的探究思路,請幫他補充完整.(1)注意到為等邊三角形,且,可得,于是可證,進而可得,注意到為中點,,因此和滿足的等量關系為______.(2)設,,則的取值范圍是______.結合(1)中的關系求與的函數(shù)關系.(3)在平面直角坐標系中,根據(jù)已有的經(jīng)驗畫出與的函數(shù)圖象,請在圖2中完成畫圖.(4)回到原問題,要使,即為,利用(3)中的圖象,通過測量,可以得到原問題的近似解為______(精確到0.1)24.(8分)如圖所示,AD、BC為兩路燈,身高相同的小明、小亮站在兩路燈桿之間,兩人相距6.5m,小明站在P處,小亮站在Q處,小明在路燈C下的影長為2m,已知小明身高1.8m,路燈BC高9m.①計算小亮在路燈D下的影長;②計算建筑物AD的高.25.(10分)已知二次函數(shù).用配方法求該二次函數(shù)圖象的頂點坐標;在所給坐標系中畫出該二次函數(shù)的圖象,并直接寫出當時自變量的取值范圍.26.(10分)已知關于的一元二次方程有兩個實數(shù)根,.(1)求的取值范圍:(2)當時,求的值.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.2、A【分析】利息問題是一個難點,要把握好利息、本金、利息稅的概念,由利息稅可求得利息為4.5÷20%=22.5元,根據(jù)年利率又可求得本金.【詳解】解:據(jù)題意得:利息為4.5÷20%=22.5元本金為22.5÷2.25%=1000元.故選:A.【點睛】本題考查利息問題,此題關系明確,關鍵是分清利息、本金、利息稅的概念.3、B【分析】設這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),根據(jù)兩數(shù)之積為1,即可得出關于x的一元二次方程,解之取其正值即可得出結論.【詳解】解:設這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),依題意,得:x(x﹣1)=1,解得:x1=12,x2=﹣11(不合題意,舍去).故選:B.【點睛】本題考查的知識點是一元二次方程的應用,找準題目中的等量關系式是解此題的關鍵.4、B【解析】根據(jù)垂徑定理,構造直角三角形,連接OC,在RT△OCE中應用勾股定理即可.【詳解】試題解析:由題意連接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故選B.5、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.6、B【分析】設這次有x隊參加比賽,由于賽制為單循環(huán)形式(每兩隊之間都賽一場),則此次比賽的總場數(shù)為:x(x-1)場.根據(jù)題意可知:此次比賽的總場數(shù)=21場,依此等量關系列出方程即可.【詳解】設這次有x隊參加比賽,則此次比賽的總場數(shù)為x(x?1)場,根據(jù)題意列出方程得:x(x?1)=21,整理,得:x(x?1)=42,故答案為x(x?1)=42.故選B.【點睛】本題考查由實際問題抽象出一元二次方程,準確找到等量關系是解題的關鍵.7、C【分析】根據(jù)sin60°=解答即可.【詳解】解:∵α為銳角,sinα=,sin60°=,∴α=60°.故選:C.【點睛】本題考查的是特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關鍵.8、C【分析】連接AG并延長交BC于點F,根據(jù)G為重心可知,AG=2FG,CF=BF,再證明△ADG∽△GEF,得出,設矩形CDGE中,DG=a,EG=b,用含a,b的式子將AC,BC的長表示出來,再列式化簡即可求出結果.【詳解】解:連接AG并延長交BC于點F,根據(jù)G為重心可知,AG=2FG,CF=BF,易得四邊形GDCE為矩形,∴DG∥BC,DG=CD=EG=CE,∠CDG=∠CEG=90°,∴∠AGD=∠AFC,∠ADG=∠GEF=90°,∴△ADG∽△GEF,∴.設矩形CDGE中,DG=a,EG=b,∴AC=AD+CD=2EG+EG=3b,BC=2CF=2(CE+EF)=2(DG+)=3a,∴.故選:C.【點睛】本題主要考查重心的概念及相似的判定與性質以及矩形的性質,正確作出輔助線構造相似三角形是解題的突破口,掌握基本概念和性質是解題的關鍵.9、B【分析】根據(jù)全等三角形的判定(ASA)即可得到正確;根據(jù)相似三角形的判定可得正確;根據(jù)全等三角形的性質可得正確;根據(jù)相似三角形的性質和判定、勾股定理,即可得到答案.【詳解】解:四邊形是正方形,,,,,,故正確;,點四點共圓,∴,∴,故正確;,,,故正確;,,又,是等腰直角三角形,,,,,,,,,,又中,,,,故錯誤,故選.【點睛】本題考查全等三角形的判定(ASA)和性質、相似三角形的性質和判定、勾股定理,解題的關鍵是掌握全等三角形的判定(ASA)和性質、相似三角形的性質和判定.10、D【解析】一定會發(fā)生的事件為必然事件,即發(fā)生的概率是1的事件.根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、兩條線段可以組成一個三角形是不可能事件;B、打開電視機,它正在播放動畫片是隨機事件;C、早上的太陽從西方升起是不可能事件;D、400人中有兩個人的生日在同一天是不必然事件;故選:D.【點睛】本題考查的是必然事件.不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題(每小題3分,共24分)11、(1,4).【解析】試題解析:拋物線的對稱軸為:點關于該拋物線的對稱軸對稱的點的坐標是故答案為12、.【分析】已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據(jù)勾股定理還可求出BC的長度,進而確定點B的坐標;將點B的坐標代入反比例函數(shù)的解析式中,即可求出k的值.【詳解】過點B作BC垂直O(jiān)A于C,∵點A的坐標是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標是把代入,得故答案為.【點睛】考查待定系數(shù)法確定反比例函數(shù)的解析式,只需求出反比例函數(shù)圖象上一點的坐標;13、1【分析】根據(jù)根與系數(shù)的關系得到x1+x2=-3,x1x2=-4,再利用完全平方公式變形得到x12+x1x2+x22=(x1+x2)2-x1x2,然后利用整體代入的方法計算.【詳解】根據(jù)題意得x1+x2=-3,x1x2=-4,

所以x12+x1x2+x22=(x1+x2)2-x1x2=(-3)2-(-4)=1.

故答案為1.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.14、6【解析】符合條件的最多情況為:即最多為2+2+2=615、【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根據(jù),得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當點C、O、P在同一直線上時,CP最小,構建圓,利用勾股定理,即可得解.【詳解】∵,,,∴∴∠CAB=30°,∠ABC=60°∵,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當點C、O、P在同一直線上時,CP最小∴CO⊥AB,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴∴故答案為.【點睛】此題主要考查直角三角形中的動點綜合問題,解題關鍵是找到點P的位置.16、相離【解析】r=2,d=3,則直線l與⊙O的位置關系是相離17、20%【分析】根據(jù)增長(降低)率公式可列出式子.【詳解】設月平均增長率為x.根據(jù)題意可得:.解得:.所以增長率為20%.故答案為:20%.【點睛】本題主要考查了一元二次方程的應用,記住增長率公式很重要.18、(0,-1)【分析】拋物線的解析式為:y=ax2+k,其頂點坐標是(0,k),可以確定拋物線的頂點坐標.【詳解】拋物線的頂點坐標是(0,-1).三、解答題(共66分)19、(1)證明見解析;(2)CD=1.【解析】(1)欲證明PD∥BC,只要證明∠P=∠CBF即可;(2)由△ACE∽△CBE,可得,求出EC,再根據(jù)垂徑定理即可解決問題.【詳解】(1)證明:∵FC=FB,∴∠C=∠CBF,∵∠P=∠C,∴∠P=∠CBF,∴PD∥BC.(2)連接AC,∵AB是直徑,∴∠ACB=90°,∵AB⊥CD,∴CE=ED,∠AEC=∠CEB=90°,∵∠CAE+∠ACE=90°,∠ACE+∠BCE=90°,∴∠CAE=∠BCE,∴△ACE∽△CBE,∴,∴,∴EC2=144,∵EC>0,∴EC=12,∴CD=2EC=1.【點睛】本題考查圓周角定理,垂徑定理,平行線的判定,等腰三角形的性質,相似三角形的判定和性質等知識,解題的關鍵是正確尋找相似三角形解決問題,屬于中考常考題型.20、(1)(2)當x=52時,w有最大值為2640.【分析】(1)售單價每上漲1元,每天銷售量減少10本,則售單價每上漲(x-44)元,每天銷售量減少10(x-44)本,所以y=300-10(x-44),然后利用銷售單價不低于44元,且獲利不高于30%確定x的范圍;

(2)利用利用每本的利潤乘以銷售量得到總利潤得到w=(x-40)(-10x+740),再把它變形為頂點式,然后利用二次函數(shù)的性質得到x=52時w最大,從而計算出x=52時對應的w的值即可.【詳解】(1)由題意得:y=300-10(x-44)=-10x+740,

每本進價40元,且獲利不高于30%,即最高價為52元,即x≤52,故:44≤x≤52,

(2)w=(x-40)(-10x+740)=-10(x-57)2+2890,

當x<57時,w隨x的增大而增大,

而44≤x≤52,所以當x=52時,w有最大值,最大值為2640,

答:將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤2640元.【點睛】此題考查二元一次函數(shù)的應用,二次函數(shù)的應用.最大銷售利潤的問題常利函數(shù)的增減性來解答,解題關鍵在于確定變量,建立函數(shù)模型,然后結合實際選擇最優(yōu)方案.其中要注意應該在自變量的取值范圍內求最大值(或最小值),也就是說二次函數(shù)的最值不一定在x=?時取得.21、依題意畫出圖形G為⊙O,如圖所示,見解析;(1)證明見解析;(2)直線DE與圖形G的公共點個數(shù)為1個.【解析】(1)根據(jù)線段垂直平分線的性質得出圖形G為⊙O,再根據(jù)在同圓或等圓中相等的圓周角所對的弧相等得出;從而得出弦相等即可.(2)先根據(jù)HL得出△CDF≌△CMF,得出DF=MF,從而得出BC為弦DM的垂直平分線,根據(jù)圓心角和圓周角之間的關系定理得出∠ABC=∠COD,再證得DE為⊙O的切線即可【詳解】如圖所示,依題意畫出圖形G為⊙O,如圖所示(1)證明:∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD(2)解:∵AD=CD,AD=CM,∴CD=CM.∵DF⊥BC,∴∠DFC=∠CFM=90°在Rt△CDF和Rt△CMF中,∴△CDF≌△CMF(HL),∴DF=MF,∴BC為弦DM的垂直平分線∴BC為⊙O的直徑,連接OD∵∠COD=2∠CBD,∠ABC=2∠CBD,∴∠ABC=∠COD,∴OD∥BE.又∵DE⊥BA,∴∠DEB=90°,∴∠ODE=90°,即OD⊥DE,∴DE為⊙O的切線.∴直線DE與圖形G的公共點個數(shù)為1個.【點睛】本題考查了垂直平分線的性質,圓心角和圓周角之間的關系定理,切線的判定,熟練掌握相關的知識是解題的關鍵.22、±3【分析】原式通分并利用同分母分式的減法法則計算,約分得到最簡結果,已知等式利用平方差公式化簡,整理得到2b=3a或2b=-3a,代入計算即可求出值.【詳解】原式=--====-2·,∵9a2-4b2=0,∴=,∴=±,∴原式=-2×=-3或原式=.點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論