版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆蘇州市工業(yè)重點中學中考數(shù)學考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+22.如圖,EF過?ABCD對角線的交點O,交AD于E,交BC于F,若?ABCD的周長為18,,則四邊形EFCD的周長為A.14 B.13 C.12 D.103.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠14.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.95.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結(jié)論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.46.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA7.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.8.對于命題“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°9.下列運算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣110.我國作家莫言獲得諾貝爾文學獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達到2100000冊.把2100000用科學記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×106二、填空題(共7小題,每小題3分,滿分21分)11.已知反比例函數(shù)的圖像經(jīng)過點,那么的值是__.12.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.13.計算:___________.14.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側(cè)面展開圖的面積為.15.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個數(shù)是______.16.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.17.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.三、解答題(共7小題,滿分69分)18.(10分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.19.(5分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.(1)試說明DF是⊙O的切線;(2)若AC=3AE,求tanC.20.(8分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.(1)求證:△PFA∽△ABE;(2)當點P在線段AD上運動時,設PA=x,是否存在實數(shù)x,使得以點P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件:.21.(10分)已知關于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β求m的取值范圍;若α+β+αβ=1.求m的值.22.(10分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.求y關于x的函數(shù)關系式;該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.23.(12分)如圖所示,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.求線段MN的長.若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.24.(14分)已知:如圖,在四邊形ABCD中,AD∥BC,點E為CD邊上一點,AE與BE分別為∠DAB和∠CBA的平分線.(1)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)在(1)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sin∠AGF=45
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.2、C【解析】
∵平行四邊形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四邊形ABCD=18,∴CD+AD=9,∴C四邊形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故選C.【點睛】本題關鍵在于利用三角形全等,解題關鍵是將四邊形CDEF的周長進行轉(zhuǎn)化.3、D【解析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.4、B【解析】
作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.5、B【解析】
由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①拋物線與y軸交于負半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結(jié)論有2個.故選B.【點睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的值求2a與b的關系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.6、B【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.7、D【解析】
根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關鍵.8、D【解析】
能說明是假命題的反例就是能滿足已知條件,但不滿足結(jié)論的例子.【詳解】“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題為∠1=∠1=45°.故選:D.【點睛】考查了命題與定理的知識,理解能說明它是假命題的反例的含義是解決本題的關鍵.9、D【解析】分析:根據(jù)合并同類項法則,同底數(shù)冪相除,積的乘方的性質(zhì),同底數(shù)冪相乘的性質(zhì),逐一判斷即可.詳解:根據(jù)合并同類項法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關運算,是一道綜合性題目,熟練應用整式的相關性質(zhì)和運算法則是解題關鍵.10、D【解析】2100000=2.1×106.點睛:對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
將點的坐標代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.【點睛】本題主要考查函數(shù)圖像上的點滿足其解析式,可以結(jié)合代入法進行解答12、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結(jié)果是x≥3,y=1.13、x+1【解析】
先通分,進行分式的加減法,再將分子進行因式分解,然后約分即可求出結(jié)果.【詳解】解:=.故答案是:x+1.【點睛】本題主要考查分式的混合運算,通分、因式分解和約分是解答的關鍵.14、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側(cè)面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.15、①②③④.【解析】
由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;
由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,F(xiàn)G⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD?FE=AD2=FQ?AC,④正確;
故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關鍵.16、3【解析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,17、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質(zhì)、相似三角形的判定和性質(zhì).利用三角形重心的性質(zhì)得出AG:AD=2:3是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)任意實數(shù);(2);(3)見解析;(4)①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【解析】
(1)沒有限定要求,所以x為任意實數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點,連線即可解題,(4)看圖確定極點坐標,即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實數(shù);故答案為任意實數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.故答案為①當x<﹣2時,y隨x的增大而增大;②當x>2時,y隨x的增大而增大.【點睛】本題考查了函數(shù)的圖像和性質(zhì),屬于簡單題,熟悉函數(shù)的圖像和概念是解題關鍵.19、(1)詳見解析;(2)【解析】
(1)連接OD,根據(jù)等邊對等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【詳解】(1)連接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切線;(2)連接BE,∵AB是直徑,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.20、(1)證明見解析;(2)3或.(3)或0<【解析】
(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件可以證明兩個角對應相等,從而證明三角形相似;
(2)由于對應關系不確定,所以應針對不同的對應關系分情況考慮:當時,則得到四邊形為矩形,從而求得的值;當時,再結(jié)合(1)中的結(jié)論,得到等腰.再根據(jù)等腰三角形的三線合一得到是的中點,運用勾股定理和相似三角形的性質(zhì)進行求解.
(3)此題首先應針對點的位置分為兩種大情況:①與AE相切,②與線段只有一個公共點,不一定必須相切,只要保證和線段只有一個公共點即可.故求得相切時的情況和相交,但其中一個交點在線段外的情況即是的取值范圍.【詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當△EFP∽△ABE,且∠PEF=∠EAB時,則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當△PFE∽△ABE,且∠PEF=∠AEB時,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點F為AE的中點,即∴滿足條件的x的值為3或(3)或【點睛】兩組角對應相等,兩三角形相似.21、(1)m≥﹣34;(2)m【解析】
(1)根據(jù)方程有兩個相等的實數(shù)根可知△>1,求出m的取值范圍即可;(2)根據(jù)根與系數(shù)的關系得出α+β與αβ的值,代入代數(shù)式進行計算即可.【詳解】(1)由題意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣34(2)由根與系數(shù)的關系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣34所以m1=﹣1應舍去,m的值為2.【點睛】本題考查的是根與系數(shù)的關系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,x1+x2=﹣ba,x1x2=c22、(1)=﹣100x+50000;(2)該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)見解析.【解析】【分析】(1)根據(jù)“總利潤=A型電腦每臺利潤×A電腦數(shù)量+B型電腦每臺利潤×B電腦數(shù)量”可得函數(shù)解析式;(2)根據(jù)“B型電腦的進貨量不超過A型電腦的2倍且電腦數(shù)量為整數(shù)”求得x的范圍,再結(jié)合(1)所求函數(shù)解析式及一次函數(shù)的性質(zhì)求解可得;(3)據(jù)題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當0<a<100時,y隨x的增大而減小,②a=100時,y=50000,③當100<m<200時,a﹣100>0,y隨x的增大而增大,分別進行求解.【詳解】(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y隨x的增大而減小,∵x為正數(shù),∴x=34時,y取得最大值,最大值為46600,答:該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)據(jù)題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①當0<a<100時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②a=100時,a﹣100=0,y=50000,即商店購進A型電腦數(shù)量滿足33≤x≤60的整數(shù)時,均獲得最大利潤;③當100<a<200時,a﹣100>0,y隨x的增大而增大,∴當x=60時,y取得最大值.即商店購進60臺A型電腦和40臺B型電腦的銷售利潤最大.【點睛】本題考查了一次函數(shù)的應用及一元一次不等式的應用,弄清題意,找出題中的數(shù)量關系列出函數(shù)關系式、找出不等關系列出不等式是解題的關鍵.23、(1)7cm(2)若C為線段AB上任意一點,且滿足AC+CB=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感恩節(jié)的精彩發(fā)言稿
- 保護知識產(chǎn)權我們在行動
- 踝關節(jié)鏡下后側(cè)入路切除跟距骨橋與(足母)長屈肌腱減壓松解術治療跟距骨橋的臨床研究
- 初級會計經(jīng)濟法基礎-初級會計《經(jīng)濟法基礎》??荚嚲?14
- 溫度差下一維兩分量玻色氣體的輸運性質(zhì)
- 二零二五版消防通道擴建整改工程合同
- 二零二五年度汽車銷售委托代理合同規(guī)范文本3篇
- 二零二五年度綠色能源汽車抵押借款合同2篇
- 知識產(chǎn)權管理制度介紹培訓
- 二零二五版?zhèn)€人房產(chǎn)交易合同范本(含家具家電清單)2篇
- 新疆烏魯木齊地區(qū)2025年高三年級第一次質(zhì)量監(jiān)測生物學試卷(含答案)
- 衛(wèi)生服務個人基本信息表
- 醫(yī)學脂質(zhì)的構(gòu)成功能及分析專題課件
- 苗圃建設項目施工組織設計范本
- 高技能人才培養(yǎng)的策略創(chuàng)新與實踐路徑
- 廣東省湛江市廉江市2023-2024學年八年級上學期期末考試數(shù)學試卷(含答案)
- 學校食品安全舉報投訴處理制度
- 2024年湖北省知名中小學教聯(lián)體聯(lián)盟中考語文一模試卷
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 生物 含解析
- 交叉口同向可變車道動態(tài)控制與信號配時優(yōu)化研究
- 燃氣行業(yè)有限空間作業(yè)安全管理制度
評論
0/150
提交評論