黑龍江省哈爾濱市示范名校2025屆高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第1頁
黑龍江省哈爾濱市示范名校2025屆高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第2頁
黑龍江省哈爾濱市示范名校2025屆高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第3頁
黑龍江省哈爾濱市示范名校2025屆高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第4頁
黑龍江省哈爾濱市示范名校2025屆高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省哈爾濱市示范名校2025屆高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平面向量的夾角為,且,則()A. B. C. D.2.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.3.設(shè)等比數(shù)列的前項和為,若則()A. B. C. D.4.已知角的終邊經(jīng)過點,則的值是()A. B. C. D.5.某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)6.甲、乙兩位射擊運動員的5次比賽成績(單位:環(huán))如莖葉圖所示,若兩位運動員平均成績相同,則成績較穩(wěn)定(方差較小)的那位運動員成績的方差為A.2 B.4 C.6 D.87.已知某7個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的方差為()A. B.3 C. D.48.已知,若關(guān)于的不等式的解集中的整數(shù)恰有3個,則實數(shù)的取值范圍是()A. B. C. D.9.已知函數(shù)的最小正周期是,其圖象向右平移個單位后得到的函數(shù)為奇函數(shù).有下列結(jié)論:①函數(shù)的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱;③函數(shù)在上是減函數(shù);④函數(shù)在上的值域為.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.410.已知變量x與y負相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù)=1.5,=5,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.12.若則____________13.已知指數(shù)函數(shù)上的最大值與最小值之和為10,則=____________。14.直線在軸上的截距是__________.15.某單位共有200名職工參加了50公里徒步活動,其中青年職工與老年職工的人數(shù)比為,中年職工有24人,現(xiàn)采取分層抽樣的方法抽取50人參加對本次活動滿意度的調(diào)查,那么應(yīng)抽取老年職工的人數(shù)為________人.16.若實數(shù)滿足,,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點.(Ⅰ)求證:平面;(Ⅱ)求證:平面⊥平面.18.如圖,在正三棱柱中,邊的中點為,.⑴求三棱錐的體積;⑵點在線段上,且平面,求的值.19.東莞市攝影協(xié)會準備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢人”攝影圖片展.通過平常人的鏡頭記錄國強民富的幸福生活,向祖國母親的生日獻禮,攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:(1)求頻率分布直方圖中的值,并根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應(yīng)作者參加“講述照片背后的故事”座談會.①在答題卡上的統(tǒng)計表中填出每組相應(yīng)抽取的人數(shù):年齡人數(shù)②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人至少有一人的年齡在的概率.20.已知數(shù)列前n項和滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.21.設(shè)數(shù)列的首項,為常數(shù),且(1)判斷數(shù)列是否為等比數(shù)列,請說明理由;(2)是數(shù)列的前項的和,若是遞增數(shù)列,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

將模平方后利用數(shù)量積的定義計算其結(jié)果,然后開根號得出的值.【詳解】,因此,,故選B.【點睛】本題考查利用平面向量的數(shù)量積來求平面向量的模,通常利用平方法結(jié)合平面向量數(shù)量積的定義來進行求解,考查計算能力,屬于中等題.2、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.3、B【解析】

根據(jù)等比數(shù)列中前項和的“片段和”的性質(zhì)求解.【詳解】由題意得,在等比數(shù)列中,成等比數(shù)列,即成等比數(shù)列,∴,解得.故選B.【點睛】設(shè)等比數(shù)列的前項和為,則仍成等比數(shù)列,即每個項的和仍成等比數(shù)列,應(yīng)用時要注意使用的條件是數(shù)列的公比.利用此結(jié)論解題可簡化運算,提高解題的效率.4、D【解析】

首先計算出,根據(jù)三角函數(shù)定義可求得正弦值和余弦值,從而得到結(jié)果.【詳解】由三角函數(shù)定義知:,,則:本題正確選項:【點睛】本題考查任意角三角函數(shù)的求解問題,屬于基礎(chǔ)題.5、A【解析】

觀察折線圖可知月接待游客量每年7,8月份明顯高于12月份,且折線圖呈現(xiàn)增長趨勢,高峰都出現(xiàn)在7、8月份,1月至6月的月接待游客量相對于7月至12月波動性更小.【詳解】對于選項A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯;對于選項B,觀察折線圖的變化趨勢可知年接待游客量逐年增加,故B正確;對于選項C,D,由圖可知顯然正確.故選A.【點睛】本題考查折線圖,考查考生的識圖能力,屬于基礎(chǔ)題.6、A【解析】

根據(jù)平均數(shù)相同求出x的值,再根據(jù)方差的定義計算即可.【詳解】根據(jù)莖葉圖中的數(shù)據(jù)知,甲、乙二人的平均成績相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均數(shù)為=90;根據(jù)莖葉圖中的數(shù)據(jù)知甲的成績波動性小,較為穩(wěn)定(方差較小),所以甲成績的方差為s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故選A.【點睛】莖葉圖的優(yōu)點是保留了原始數(shù)據(jù),便于記錄及表示,能反映數(shù)據(jù)在各段上的分布情況.莖葉圖不能直接反映總體的分布情況,這就需要通過莖葉圖給出的數(shù)據(jù)求出數(shù)據(jù)的數(shù)字特征,進一步估計總體情況.7、C【解析】

由平均數(shù)公式求得原有7個數(shù)的和,可得新的8個數(shù)的平均數(shù),由于新均值和原均值相等,因此由方差公式可得新方差.【詳解】因為7個數(shù)據(jù)的平均數(shù)為5,方差為4,現(xiàn)又加入一個新數(shù)據(jù)5,此時這8個數(shù)的平均數(shù)為,方差為,由平均數(shù)和方差的計算公式可得,.故選:C.【點睛】本題考查均值與方差的概念,掌握均值與方差的計算公式是解題關(guān)鍵.8、A【解析】

將不等式化為,可知滿足不等式,不滿足不等式,由此可確定個整數(shù)解為;當和時,解不等式可知不滿足題意;當時,解出不等式的解集,要保證整數(shù)解為,則需,解不等式組求得結(jié)果.【詳解】由得:當時,成立必為不等式的一個整數(shù)解當時,不成立不是不等式的整數(shù)解個整數(shù)解分別為:當時,,不滿足題意當時,解不等式得:或不等式不可能只有個整數(shù)解,不滿足題意當時,,解得:,即的取值范圍為:本題正確選項:【點睛】本題考查根據(jù)不等式整數(shù)解的個數(shù)求解參數(shù)范圍問題,關(guān)鍵是能夠利用特殊值確定整數(shù)解的具體取值,從而解不等式,根據(jù)整數(shù)解的取值來確定解集的上下限,構(gòu)造不等式組求得結(jié)果.9、C【解析】

根據(jù)函數(shù)最小正周期可求得,由函數(shù)圖象平移后為奇函數(shù),可求得,即可得函數(shù)的解析式.再根據(jù)正弦函數(shù)的對稱性判斷①②,利用函數(shù)的單調(diào)區(qū)間判斷③,由正弦函數(shù)的圖象與性質(zhì)判斷④即可.【詳解】函數(shù)的最小正周期是則,即向右平移個單位可得由為奇函數(shù),可知解得因為所以當時,則對于①,當時,代入解析式可得,即點不為對稱中心,所以①錯誤;對于②,當時帶入的解析式可得,所以函數(shù)的圖象關(guān)于直線對稱,所以②正確;對于③,的單調(diào)遞減區(qū)間為解得當時,單調(diào)遞減區(qū)間為,而,所以函數(shù)在上是減函數(shù),故③正確;對于④,當時,由正弦函數(shù)的圖像與性質(zhì)可知,,故④正確.綜上可知,正確的為②③④故選:C【點睛】本題考查根據(jù)三角函數(shù)性質(zhì)和平移變換求得解析式,再根據(jù)正弦函數(shù)的圖像與性質(zhì)判斷選項,屬于基礎(chǔ)題.10、A【解析】

先由變量負相關(guān),可排除D;再由回歸直線過樣本中心,即可得出結(jié)果.【詳解】因為變量x與y負相關(guān),所以排除D;又回歸直線過樣本中心,A選項,過點,所以A正確;B選項,不過點,所以B不正確;C選項,不過點,所以C不正確;故選A【點睛】本題主要考查線性回歸直線,熟記回歸直線的意義即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因為,所以,即;取連續(xù)的有限項構(gòu)成數(shù)列,不妨令,則,且,則此時必為整數(shù);當時,,不符合;當時,,符合,此時公比;當時,,不符合;當時,,不符合;故:公比.【點睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準確分析.12、【解析】因為,所以=.故填.13、【解析】

根據(jù)和時的單調(diào)性可確定最大值和最小值,進而構(gòu)造方程求得結(jié)果.【詳解】當時,在上單調(diào)遞增,,解得:或(舍)當時,在上單調(diào)遞減,,解得:(舍)或(舍)綜上所述:故答案為:【點睛】本題考查利用函數(shù)最值求解參數(shù)值的問題,關(guān)鍵是能夠根據(jù)指數(shù)函數(shù)得單調(diào)性確定最值點.14、【解析】

把直線方程化為斜截式,可得它在軸上的截距.【詳解】解:直線,即,故它在軸上的截距是4,故答案為:.【點睛】本題主要考查直線方程的幾種形式,屬于基礎(chǔ)題.15、4【解析】

直接利用分層抽樣的比例關(guān)系得到答案.【詳解】青年職工與老年職工的人數(shù)比為,中年職工有24人,故老年職工為,故應(yīng)抽取老年職工的人數(shù)為.故答案為:.【點睛】本題考查了分層抽樣的相關(guān)計算,意在考查學(xué)生的計算能力.16、【解析】

由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點睛】本題考查反正弦函數(shù),解題時注意反正弦函數(shù)的取值范圍是,結(jié)合誘導(dǎo)公式求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】

(Ⅰ)利用線面平行的判定定理,只需證明EF∥PA,即可;(Ⅱ)先證明線面垂直,CD⊥平面PAD,再證明面面垂直,平面PAD⊥平面PDC

即可.【詳解】(Ⅰ)證明:連結(jié)AC,在正方形ABCD中,F(xiàn)為BD中點,正方形對角線互相平分,∴F為AC中點,又E是PC中點,在△CPA中,EF∥PA,且PA?平面PAD,EF?平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵CD?平面PDC,∴平面PAD⊥平面PDC【點睛】本題主要考查空間直線與平面平行的判定定理,以及平面與平面垂直的判定定理,要求熟練掌握相關(guān)的判定定理.18、(1)(2)【解析】

(1)由題可得平面,故,從而求得三棱錐的體積;(2)連接交于,連接交于,連結(jié),由平面可得,由正三棱柱的性質(zhì)可得,從而得到的值.【詳解】⑴因為為正三棱柱所以平面⑵連接交于,連接交于,連結(jié)因為//平面,平面,平面平面,所以,因為為正三棱柱,所以側(cè)面和側(cè)面為平行四邊形,從而有為的中點,于是為的中點所以,因為為邊的中點,所以也為邊中點,從而【點睛】本題考查三棱錐的體積,線面垂直的性質(zhì),正三棱柱的性質(zhì)等知識,屬于中檔題.19、(1),平均數(shù)為,中位數(shù)為(2)①見解析②【解析】

(1)由頻率分布直方圖各個小矩形的面積之和為1可得,用區(qū)間中點值代替可計算均值,中位數(shù)把頻率分布直方圖中小矩形面積等分.(2)①分層抽樣,是按比例抽取人數(shù);②年齡在有2人,在有4人,設(shè)在的是,,在的是,可用列舉法列舉出選2人的所有可能,然后可計算出概率.【詳解】(1)由頻率分布直方圖各個小矩形的面積之和為1,得在頻率分布直方圖中,這100位參賽者年齡的樣本平均數(shù)為:設(shè)中位數(shù)為,由,解得.(2)①每組應(yīng)各抽取人數(shù)如下表:年齡人數(shù)12485②根據(jù)分層抽樣的原理,年齡在有2人,在有4人,設(shè)在的是,,在的是,列舉選出2人的所有可能如下:,共15種情況.設(shè)“這2人至少有一人的年齡在區(qū)間”為事件,則包含:共9種情況則【點睛】本題考查頻率分布直方圖,考查樣本數(shù)據(jù)特征、古典概型,屬于基礎(chǔ)題型.20、(1)(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論