西藏林芝地區(qū)二高2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
西藏林芝地區(qū)二高2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
西藏林芝地區(qū)二高2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
西藏林芝地區(qū)二高2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
西藏林芝地區(qū)二高2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

西藏林芝地區(qū)二高2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集合,,則()A. B. C. D.2.甲、乙、丙三人隨意坐下,乙不坐中間的概率為()A. B. C. D.3.在中,,且面積為1,則下列結(jié)論不正確的是()A. B. C. D.4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的圖象如下,則點的坐標是()A.(,) B.(,)C.(,) D.(,)5.,,是空間三條不同的直線,則下列命題正確的是A., B.,C.,,共面 D.,,共點,,共面6.已知四面體中,,分別是,的中點,若,,與所成角的度數(shù)為30°,則與所成角的度數(shù)為()A.90° B.45° C.60° D.30°7.如圖,在平面直角坐標系xOy中,角α0≤α≤π的始邊為x軸的非負半軸,終邊與單位圓的交點為A,將OA繞坐標原點逆時針旋轉(zhuǎn)π2至OB,過點B作x軸的垂線,垂足為Q.記線段BQ的長為y,則函數(shù)A. B.C. D.8.在平面坐標系中,是圓上的四段?。ㄈ鐖D),點P在其中一段上,角以O(shè)x為始邊,OP為終邊,若,則P所在的圓弧最有可能的是()A. B. C. D.9.從2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中的2人都是女同學(xué)的概率為A. B. C. D.10.在棱長為1的正方體中,點在線段上運動,則下列命題錯誤的是()A.異面直線和所成的角為定值 B.直線和平面平行C.三棱錐的體積為定值 D.直線和平面所成的角為定值二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線l過點P(-2,5),且斜率為-,則直線l的方程為________.12.已知數(shù)列是等比數(shù)列,公比為,且,,則_________.13.一湖中有不在同一直線的三個小島A、B、C,前期為開發(fā)旅游資源在A、B、C三島之間已經(jīng)建有索道供游客觀賞,經(jīng)測量可知AB兩島之間距離為3公里,BC兩島之間距離為5公里,AC兩島之間距離為7公里,現(xiàn)調(diào)查后發(fā)現(xiàn),游客對在同一圓周上三島A、B、C且位于(優(yōu)弧)一片的風(fēng)景更加喜歡,但由于環(huán)保、安全等其他原因,沒辦法盡可能一次游覽更大面積的湖面風(fēng)光,現(xiàn)決定在上選擇一個點D建立索道供游客游覽,經(jīng)研究論證為使得游覽面積最大,只需使得△ADC面積最大即可.則當△ADC面積最大時建立索道AD的長為______公里.(注:索道兩端之間的長度視為線段)14.中,,,,則______.15.數(shù)列滿足,(且),則數(shù)列的通項公式為________.16.等比數(shù)列滿足其公比_________________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知(1)求的定義域;(2)判斷的奇偶性并予以證;;(3)求使>0成立的x的取值范圍.18.已知.(1)若對任意的,不等式上恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式.19.對于三個實數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實數(shù)的取值范圍;(3)設(shè),,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.20.2013年11月,總書記到湖南湘西考察時首次作出了“實事求是、因地制宜、分類指導(dǎo)精準扶貧”的重要指示.2014年1月,中央詳細規(guī)制了精準扶貧工作模式的頂層設(shè)計,推動了“精準扶貧”思想落地.2015年1月,精準扶貧首個調(diào)研地點選擇了云南,標志著精準扶貧正式開始實行.某單位立即響應(yīng)黨中央號召,對某村6戶貧困戶中的甲戶進行定點幫扶,每年跟蹤調(diào)查統(tǒng)計一次,從2015年1月1日至2018年12月底統(tǒng)計數(shù)據(jù)如下(人均年純收入):年份2015年2016年2017年2018年年份代碼1234收入(百元)25283235(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計甲戶在2019年能否脫貧;(注:國家規(guī)定2019年脫貧標準:人均年純收入為3747元)(2)2019年初,根據(jù)扶貧辦的統(tǒng)計知,該村剩余5戶貧困戶中還有2戶沒有脫貧,現(xiàn)從這5戶中抽取2戶,求至少有一戶沒有脫貧的概率.參考公式:,,其中為數(shù)據(jù)的平均數(shù).21.在中,,.(1)求角B的大??;(2)的面積,求的邊BC的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

首先求得集合,根據(jù)交集定義求得結(jié)果.【詳解】本題正確選項:【點睛】本題考查集合運算中的交集運算,屬于基礎(chǔ)題.2、A【解析】甲、乙、丙三人隨意坐下有種結(jié)果,乙坐中間則有,乙不坐中間有種情況,概率為,故選A.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.3、C【解析】

根據(jù)三角形面積公式列式,求得,再根據(jù)基本不等式判斷出C選項錯誤.【詳解】根據(jù)三角形面積為得,三個式子相乘,得到,由于,所以.所以,故C選項錯誤.所以本小題選C.【點睛】本小題主要考查三角形面積公式,考查基本不等式的運用,屬于中檔題.4、C【解析】

由函數(shù)f(x)的部分圖象求得A、T、ω和φ的值即可.【詳解】由函數(shù)f(x)=Asin(ωx+φ)的部分圖象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1時,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴點P(,).故選C.【點睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求.5、B【解析】

解:因為如果一條直線平行于兩條垂線中的一條,必定垂直于另一條.選項A,可能相交.選項C中,可能不共面,比如三棱柱的三條側(cè)棱,選項D,三線共點,可能是棱錐的三條棱,因此錯誤.選B.6、A【解析】

取的中點,利用三角形中位線定理,可以得到,與所成角為,運用三角形中位線定理和正弦定理,可以求出的大小,也就能求出與所成角的度數(shù).【詳解】取的中點連接,如下圖所示:因為,分別是,的中點,所以有,因為與所成角的度數(shù)為30°,所以,與所成角的大小等于的度數(shù).在中,,故本題選A.【點睛】本題考查了異面直線所成角的求法,考查了正弦定理,取中點利用三角形中位線定理是解題的關(guān)鍵.7、B【解析】BQ=|y點睛:有關(guān)函數(shù)圖象識別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實際情景探究函數(shù)圖象.關(guān)鍵是將問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題求解,要注意實際問題中的定義域問題.8、A【解析】

根據(jù)三角函數(shù)線的定義,分別進行判斷排除即可得答案.【詳解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,則cosα<sinα<tanα;若P在EF段,正切,余弦為負值,正弦為正,tanα<cosα<sinα;若P在GH段,正切為正值,正弦和余弦為負值,cosα<sinα<tanα.∴P所在的圓弧最有可能的是.故選:A.【點睛】本題任意角的三角函數(shù)的應(yīng)用,根據(jù)角的大小判斷角的正弦、余弦、正切值的正負及大小,為基礎(chǔ)題.9、D【解析】分析:分別求出事件“2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù)”的總可能及事件“選中的2人都是女同學(xué)”的總可能,代入概率公式可求得概率.詳解:設(shè)2名男同學(xué)為,3名女同學(xué)為,從以上5名同學(xué)中任選2人總共有共10種可能,選中的2人都是女同學(xué)的情況共有共三種可能則選中的2人都是女同學(xué)的概率為,故選D.點睛:應(yīng)用古典概型求某事件的步驟:第一步,判斷本試驗的結(jié)果是否為等可能事件,設(shè)出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個數(shù);第三步,利用公式求出事件的概率.10、D【解析】

結(jié)合條件和各知識點對四個選項逐個進行分析,即可得解.【詳解】,在棱長為的正方體中,點在線段上運動易得平面,平面,,故這兩個異面直線所成的角為定值,故正確,直線和平面平行,所以直線和平面平行,故正確,三棱錐的體積還等于三棱錐的體積,而平面為固定平面且大小一定,,而平面點到平面的距離即為點到該平面的距離,三棱錐的體積為定值,故正確,由線面夾角的定義,令與的交點為,可得即為直線和平面所成的角,當移動時這個角是變化的,故錯誤故選【點睛】本題考查了異面直線所成角的概念、線面平行及線面角等,三棱錐的體積的計算可以進行頂點輪換及線面平行時,直線上任意一點到平面的距離都相等這一結(jié)論,即等體積法的轉(zhuǎn)換.二、填空題:本大題共6小題,每小題5分,共30分。11、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.12、.【解析】

先利用等比中項的性質(zhì)計算出的值,然后由可求出的值.【詳解】由等比中項的性質(zhì)可得,得,所以,,,故答案為.【點睛】本題考查等比數(shù)列公比的計算,充分利用等比中項和等比數(shù)列相關(guān)性質(zhì)的應(yīng)用,可簡化計算,屬于中等題.13、【解析】

根據(jù)題意畫出草圖,根據(jù)余弦定理求出的值,設(shè)點到的距離為,可得,分析可知取最大時,取最大值,然后再對為中點和不是中點兩種情況分析,可得的最大值為,然后再根據(jù)圓的有關(guān)性質(zhì)和正弦定理,即可求出結(jié)果.【詳解】根據(jù)題意可作出及其外接圓,連接,交于點,連接,如下圖:在中,由余弦定理,由為的內(nèi)角,可知,所以.設(shè)的半徑為,點到的距離為,點到的距離為,則,故取最大時,取最大值.①當為中點時,由垂徑定理知,即,此時,故;②當不是中點時,不與垂直,設(shè)此時與所成角為,則,故;由垂線段最短知,此時;綜上,當為中點時,到的距離最大,最大值為;由圓周角定理可知,,由垂徑定理知,此時點為優(yōu)弧的中點,故,則,在中,由正弦定理得所以.所以當△ADC面積最大時建立索道AD的長為公里.故答案為:.【點評】本題考查了正弦定理、余弦定理在解決實際問題中的應(yīng)用,屬于中檔題.14、【解析】

根據(jù),得到的值,再由余弦定理,得到的值.【詳解】因為,所以,在中,,,由余弦定理得.所以.故答案為:【點睛】本題考查二倍角的余弦公式,余弦定理解三角形,屬于簡單題.15、【解析】

利用累加法和裂項求和得到答案.【詳解】當時滿足故答案為【點睛】本題考查了數(shù)列的累加法,裂項求和法,意在考查學(xué)生對于數(shù)列公式和方法的靈活運用.16、【解析】

觀察式子,將兩式相除即可得到答案.【詳解】根據(jù)題意,可知,于是.【點睛】本題主要考查等比數(shù)列公比的相關(guān)計算,難度很小.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)奇函數(shù),證明見解析;(3)見解析【解析】

(1)解不等式即得函數(shù)的定義域;(2)利用奇偶性的定義判斷函數(shù)的奇偶性并證明;(3)對a分類討論,利用對數(shù)函數(shù)的單調(diào)性解不等式.【詳解】(1)由題得,所以,所以函數(shù)的定義域為;(2)函數(shù)的定義域為,所以函數(shù)的定義域關(guān)于原點對稱,所以,所以函數(shù)f(x)為奇函數(shù).(3)由題得,當a>1時,所以,因為函數(shù)的定義域為,所以;當0<a<1時,所以.【點睛】本題主要考查對數(shù)函數(shù)的定義域的求法,考查函數(shù)奇偶性的判斷和證明,考查對數(shù)函數(shù)的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.18、(1);(2)見解析.【解析】

(1)參變分離后可得在上恒成立,利用基本不等式可求的最小值,從而得到參數(shù)的取值范圍.(2)原不等式可化為,就對應(yīng)方程的兩根的大小關(guān)系分類討論可得不等式的解集.【詳解】(1)對任意的,恒成立即恒成立.因為當時,(當且僅當時等號成立),所以即.(2)不等式,即,①當即時,;②當即時,;③當即時,.綜上:當時,不等式解集為;當時,不等式解集為;當時,不等式解集為.【點睛】含參數(shù)的一元二次不等式,其一般的解法是:先考慮對應(yīng)的二次函數(shù)的開口方向,再考慮其判別式的符號,其次在判別式大于零的條件下比較兩根的大小,最后根據(jù)不等號的方向和開口方向得到不等式的解.一元二次不等式的恒成立問題,參變分離后可以轉(zhuǎn)化為函數(shù)的最值進行討論,后者可利用基本不等式來求.19、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解析】

(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【詳解】(1)①因為,成立,所以,故,0具有“性質(zhì)2”②因為,設(shè),則設(shè),對稱軸為,所以函數(shù)在上單調(diào)遞減,當時,,所以當時,不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因為,1具有“性質(zhì)2”所以化簡得解得或.因為存在及,使得成立,所以存在及使即可.令,則,當時,,所以在上是增函數(shù),所以時,,當時,,故時,因為在上單調(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個互不相同的實數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論