




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
梧州市重點中學2025屆數(shù)學高一下期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在,,,是邊上的兩個動點,且,則的取值范圍為()A. B. C. D.2.已知等比數(shù)列的首項,公比,則()A. B. C. D.3.已知等差數(shù)列{}的前n項和為,且S8=92,a5=13,則a4=A.16 B.13 C.12 D.104.己知向量,.若,則m的值為()A. B.4 C.- D.-45.設a>0,b>0,若是和的等比中項,則的最小值為()A.6 B. C.8 D.96.在中,已知其面積為,則=()A. B. C. D.7.若三點共線,則()A.13 B. C.9 D.8.設,則下列結論正確的是()A. B. C. D.9.數(shù)列的通項公式為,則數(shù)列的前100項和().A. B. C. D.10.已知向量,,若與的夾角為,則()A.2 B. C. D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)分別由下表給出:123211123321則當時,_____________.12.已知數(shù)列的前n項和,則___________.13.已知等差數(shù)列,若,則______.14.與30°角終邊相同的角_____________.15.兩個實習生加工一個零件,產品為一等品的概率分別為和,則這兩個零件中恰有一個一等品的概率為__________.16.如圖所示,梯形中,,于,,分別是,的中點,將四邊形沿折起(不與平面重合),以下結論①面;②;③.則不論折至何位置都有_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.求:(1);(2)與的夾角的余弦值;(3)求的值使與為平行向量.18.在△ABC中,角A,B,C的對邊分別為a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面積;(2)若m=,A=2B,a=,求b.19.已知數(shù)列滿足,.(1)證明:是等比數(shù)列;(2)求數(shù)列的前n項和.20.的內角A,B,C的對邊分別為a,b,c,已知(1)求A;(2)若A為銳角,,的面積為,求的周長.21.已知角的頂點在原點,始邊與軸的非負半軸重合,終邊上一點的坐標是.(1)求;(2)求;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意,可以點為原點,分別以為軸建立平面直角坐標系,如圖所示,則點的坐標分別為,直線的方程為,不妨設點的坐標分別為,,不妨設,由,所以,整理得,則,即,所以當時,有最小值,當時,有最大值.故選A.點睛:此題主要考查了向量數(shù)量積的坐標運算,以及直線方程和兩點間距離的計算等方面的知識與技能,還有坐標法的運用等,屬于中高檔題,也是??伎键c.根據(jù)題意,把運動(即的位置在變)中不變的因素()找出來,通過坐標法建立合理的直角坐標系,把點的坐標表示出來,再通過向量的坐標運算,列出式子,討論其最值,從而問題可得解.2、B【解析】
由等比數(shù)列的通項公式可得出.【詳解】解:由已知得,故選:B.【點睛】本題考查等比數(shù)列的通項公式的應用,是基礎題.3、D【解析】
利用等差數(shù)列前項和公式化簡已知條件,并用等差數(shù)列的性質轉化為的形式,由此求得的值.【詳解】依題意,,解得,故選D.【點睛】本小題主要考查等差數(shù)列前項和公式,以及等差數(shù)列的性質,解答題目過程中要注意觀察已知條件的下標.屬于基礎題.4、B【解析】
根據(jù)兩個向量垂直的坐標表示列方程,解方程求得的值.【詳解】依題意,由于,所以,解得.故選B.【點睛】本小題主要考查兩個向量垂直的坐標表示,考查向量減法的坐標運算,屬于基礎題.5、D【解析】
試題分析:由題意a>0,b>0,且是和的等比中項,即,則,當且僅當時,即時取等號.考點:重要不等式,等比中項6、C【解析】或(舍),故選C.7、D【解析】
根據(jù)三點共線,有成立,解方程即可.【詳解】因為三點共線,所以有成立,因此,故本題選D.【點睛】本題考查了斜率公式的應用,考查了三點共線的性質,考查了數(shù)學運算能力.8、B【解析】
利用不等式的性質,即可求解,得到答案.【詳解】由題意知,根據(jù)不等式的性質,兩邊同乘,可得成立.故選:B.【點睛】本題主要考查了不等式的性質及其應用,其中解答中熟記不等式的基本性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、C【解析】
根據(jù)通項公式,結合裂項求和法即可求得.【詳解】數(shù)列的通項公式為,則故選:C.【點睛】本題考查了裂項求和的應用,屬于基礎題.10、B【解析】
先計算與的模,再根據(jù)向量數(shù)量積的性質即可計算求值.【詳解】因為,,所以,.又,所以,故選B.【點睛】本題主要考查了向量的坐標運算,向量的數(shù)量積,向量的模的計算,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復合函數(shù)值求參數(shù),換元法是解題的關鍵,屬于基礎題.12、17【解析】
根據(jù)所給的通項公式,代入求得,并由代入求得.即可求得的值.【詳解】數(shù)列的前n項和,則,而,,所以,則,故答案為:.【點睛】本題考查了數(shù)列前n項和通項公式的應用,遞推法求數(shù)列的項,屬于基礎題.13、【解析】
利用等差數(shù)列的通項公式直接求解.【詳解】設等差數(shù)列公差為,由,得,解得.故答案:.【點睛】本題考查等差數(shù)列的性質等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】
根據(jù)終邊相同的角的定義可得答案.【詳解】與30°角終邊相同的角,故答案為:【點睛】本題考查了終邊相同的角的定義,屬于基礎題.15、【解析】
利用相互獨立事件概率乘法公式直接求解.【詳解】解:兩個實習生加工一個零件,產品為一等品的概率分別為和,這兩個零件中恰有一個一等品的概率為:.故答案為:.【點睛】本題考查概率的求法,考查相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,屬于基礎題.16、①②【解析】
根據(jù)題意作出折起后的幾何圖形,再根據(jù)線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識即可判斷各選項的真假.【詳解】作出折起后的幾何圖形,如圖所示:.因為,分別是,的中點,所以是的中位線,所以.而面,所以面,①正確;無論怎樣折起,始終有,所以面,即有,而,所以,②正確;折起后,面,面,且,故與是異面直線,③錯誤.故答案為:①②.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識的應用,意在考查學生的直觀想象能力和邏輯推理能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)5(2)(3)【解析】
(1)利用向量坐標運算法則,先求出向量的坐標,再求模;(2)利用兩個向量的數(shù)量積的定義和公式,則可求出與的夾角的余弦值;(3)利用兩個向量共線的性質,求出的值.【詳解】(1)向量,,,;(2)設與的夾角為,∵,,,所以,即與的夾角的余弦值為;(3)由題可得:,∵與為平行向量,∴,解得,即滿足使與為平行向量.【點睛】本題主要考查向量的坐標運算,涉及向量的模,數(shù)量積,共線等相關知識,屬于基礎題.18、(1);(2)【解析】
(1)當時,由余弦定理可求,利用同角三角函數(shù)基本關系式可求的值,根據(jù)三角形的面積公式即可求解.(2)當時,由余弦定理可求,利用同角三角函數(shù)基本關系式可求的值,根據(jù)二倍角的正弦函數(shù)公式可求的值,利用正弦定理可求的值.【詳解】(1)當時,,,,,.(2)當時,,,,由正弦定理得:,.【點睛】本題主要考查了余弦定理,同角三角函數(shù)基本關系式,三角形的面積公式,二倍角的正弦函數(shù)公式,正弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.19、(1)見解析;(2).【解析】
(1)由題設,化簡得,即可證得數(shù)列為等比數(shù)列.(2)由(1),根據(jù)等比數(shù)列的通項公式,求得,利用等比數(shù)列的前n項和公式,即可求得數(shù)列的前n項和.【詳解】(1)由題意,數(shù)列滿足,所以又因為,所以,即,所以是以2為首項,2為公比的等比數(shù)列.(2)由(1),根據(jù)等比數(shù)列的通項公式,可得,即,所以,即.【點睛】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的通項公式及前n項和公式的應用,其中解答中熟記等比數(shù)列的定義,以及等比數(shù)列的通項公式和前n項和的公式,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1)或;(2).【解析】
(1)由正弦定理將邊化為對應角的正弦值,即可求出結果;(2)由余弦定理和三角形的面積公式聯(lián)立,即可求出結果.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件設計師考試技巧分享試題與答案
- 各類網(wǎng)絡設備的功能特點試題及答案
- 阿里java內推面試題及答案
- 標志建筑面試題及答案
- 軟件設計師考試準備工作指導試題及答案
- 投資政策的吸引力與保障措施試題及答案
- 項目成功關鍵因素識別試題及答案
- 項目管理中的數(shù)字化工具應用試題及答案
- 探討西方政治制度對社會穩(wěn)定的保障試題及答案
- 機電工程面試準備試題及答案
- 2024年安徽省高考政治+歷史+地理試卷(真題+答案)
- 美育視域下非遺文化在高校舞蹈教育中的傳承研究
- 建筑工地輿情處理應急預案
- 2024年個人信用報告(個人簡版)樣本(帶水印-可編輯)
- 2023年河南省對口升學計算機類基礎課試卷
- 16J914-1 公用建筑衛(wèi)生間
- 2024年北京市中考物理模擬卷(一)
- MOOC 從china到China:中國陶瓷文化三十講-景德鎮(zhèn)陶瓷大學 中國大學慕課答案
- 小區(qū)車輛刮蹭處理預案
- 手術室預防墜床課件
- 《復興號動車組》課件
評論
0/150
提交評論