新疆石河子一中2025屆高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第1頁
新疆石河子一中2025屆高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第2頁
新疆石河子一中2025屆高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第3頁
新疆石河子一中2025屆高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第4頁
新疆石河子一中2025屆高一數(shù)學第二學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

新疆石河子一中2025屆高一數(shù)學第二學期期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設l是直線,,是兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.函數(shù)的定義域為()A. B. C. D.3.若過點,的直線與直線平行,則的值為()A.1 B.4 C.1或3 D.1或44.如圖,在長方體中,,,,分別是,的中點則異面直線與所成角的余弦值為()A. B. C. D.5.已知正項數(shù)列,若點在函數(shù)的圖像上,則()A.12 B.13 C.14 D.166.在中,角,,所對的邊分別為,,,若,,,則()A. B. C. D.7.已知函數(shù)在區(qū)間內(nèi)單調(diào)遞增,且,若,,,則、、的大小關系為()A. B. C. D.8.設函數(shù),則滿足的x的取值范圍是()A. B. C. D.9.方程的解所在區(qū)間是()A. B.C. D.10.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則的最小值為_______.12.已知數(shù)列的通項公式,則____________.13.已知函數(shù)的最小正周期為,且的圖象過點,則方程所有解的和為________.14.記為等差數(shù)列的前項和,若,則___________.15.如圖是甲、乙兩人在10天中每天加工零件個數(shù)的莖葉圖,若這10天甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則______.16.某班委會由4名男生與3名女生組成,現(xiàn)從中選出2人擔任正副班長,其中至少有1名女生當選的概率是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)證明:⊥平面;(2)若,求點到平面的距離.18.為了了解高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.(1)求第二小組的頻率;(2)求樣本容量;(3)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?19.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)是上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;(3)若,函數(shù)在上的上界是,求的解析式.20.設向量.(1)當時,求的值;(2)若,且,求的值.21.已知數(shù)列為等差數(shù)列,,,數(shù)列為等比數(shù)列,,公比.(1)求數(shù)列、的通項公式;(2)求數(shù)列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用空間線線、線面、面面的位置關系對選項進行逐一判斷,即可得到答案.【詳解】A.若,,則與可能平行,也可能相交,所以不正確.B.若,,則與可能的位置關系有相交、平行或,所以不正確.C.若,,則可能,所以不正確.D.若,,由線面平行的性質(zhì)過的平面與相交于,則,又.

所以,所以有,所以正確.故選:D【點睛】本題考查面面平行、垂直的判斷,線面平行和垂直的判斷,屬于基礎題.2、A【解析】

根據(jù)對數(shù)函數(shù)的定義域直接求解即可.【詳解】由題知函數(shù),所以,所以函數(shù)的定義域是.故選:A.【點睛】本題考查了對數(shù)函數(shù)的定義域的求解,屬于基礎題.3、A【解析】

首先設一條與已知直線平行的直線,點,代入直線方程即可求出的值.【詳解】設與直線平行的直線:,點,代入直線方程,有.故選:A.【點睛】本題考查了利用直線的平行關系求參數(shù),屬于基礎題.注意直線與直線在時相互平行.4、A【解析】

連結,由,可知異面直線與所成角是,分別求出,然后利用余弦定理可求出答案.【詳解】連結,因為,所以異面直線與所成角是,在中,,,,所以.故選A.【點睛】本題考查了異面直線的夾角,考查了利用余弦定理求角,考查了計算能力,屬于中檔題.5、A【解析】

由已知點在函數(shù)圖象上求出通項公式,得,由對數(shù)的定義計算.【詳解】由題意,,∴,∴.故選:A.【點睛】本題考查數(shù)列的通項公式,考查對數(shù)的運算.屬于基礎題.6、C【解析】

在中,利用正弦定理求出即可.【詳解】在中,角,,所對的邊分別為,,,已知:,,,利用正弦定理:,解得:.故選C.【點睛】本題考查了正弦定理的應用及相關的運算問題,屬于基礎題.7、B【解析】

由偶函數(shù)的性質(zhì)可得出函數(shù)在區(qū)間上為減函數(shù),由對數(shù)的性質(zhì)可得出,由偶函數(shù)的性質(zhì)得出,比較出、、的大小關系,再利用函數(shù)在區(qū)間上的單調(diào)性可得出、、的大小關系.【詳解】,則函數(shù)為偶函數(shù),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在該函數(shù)在區(qū)間上為減函數(shù),,由換底公式得,由函數(shù)的性質(zhì)可得,對數(shù)函數(shù)在上為增函數(shù),則,指數(shù)函數(shù)為增函數(shù),則,即,,因此,.【點睛】本題考查利用函數(shù)的奇偶性與單調(diào)性比較函數(shù)值的大小關系,同時也考查了利用中間值法比較指數(shù)式和代數(shù)式的大小關系,涉及指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.8、B【解析】

分別解和時條件對應的不等式即可.【詳解】①當時,,此時,不合題意;②當時,,可化為即,解得.綜上,的x的取值范圍是.故選:B.【點睛】本題考查了分段函數(shù)不等式的解法,考查了分類討論思想,屬于基礎題.9、D【解析】

令,則,所以零點在區(qū)間.方程的解所在區(qū)間是,故選D.10、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將變換為,展開利用均值不等式得到答案.【詳解】若,且,則時等號成立.故答案為【點睛】本題考查了均值不等式,“1”的代換是解題的關鍵.12、【解析】

將代入即可求解【詳解】令,可得.故答案為:【點睛】本題考查求數(shù)列的項,是基礎題13、【解析】

由周期求出,由圖象的所過點的坐標求得,【詳解】由題意,又,且,∴,,由得或,又,,∴或,或,兩根之和為.故答案為:.【點睛】本題考查求三角函數(shù)的解析式,考查解三角方程.掌握正切函數(shù)的性質(zhì)是解題關鍵.14、100【解析】

根據(jù)題意可求出首項和公差,進而求得結果.【詳解】得【點睛】本題考點為等差數(shù)列的求和,為基礎題目,利用基本量思想解題即可,充分記牢等差數(shù)列的求和公式是解題的關鍵.15、44.5【解析】

由莖葉圖直接可以求出甲的中位數(shù)和乙的平均數(shù),求和即可.【詳解】由莖葉圖知,甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則.【點睛】本題主要考查利用莖葉圖求中位數(shù)和平均數(shù).16、【解析】試題分析:∵從7人中選2人共有C72=21種選法,從4個男生中選2人共有C42=6種選法∴沒有女生的概率是=,∴至少有1名女生當選的概率1-=.考點:本題主要考查古典概型及其概率計算公式.點評:在使用古典概型的概率公式時,應該注意:(1)要判斷該概率模型是不是古典概型;(2)要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)通過⊥,⊥來證明;(2)根據(jù)等體積法求解.【詳解】(1)證明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即點到平面的距離為【點睛】本題考查線面垂直與點到平面的距離.線面垂直的證明要轉(zhuǎn)化為線線垂直;點到平面的距離常規(guī)方法是作出垂線段求解,此題根據(jù)等體積法能簡化計算.18、(1);(2);(3)%【解析】

(1)由于每個長方形的面積即為本組的頻率,設第二小組的頻率為4,則解得第二小組的頻率為(2)設樣本容量為,則(3)由(1)和直方圖可知,次數(shù)在110以上的頻率為由此估計全體高一學生的達標率為%19、(1)見解析;(2);(3).【解析】

(1)通過判斷函數(shù)的單調(diào)性,求出的值域,進而可判斷在上是否為有界函數(shù);(2)利用題中所給定義,列出不等式,換元,轉(zhuǎn)化為恒成立問題,通過分參求構造函數(shù)的最值,就可求得實數(shù)的取值范圍;(3)通過分離常數(shù)法求的值域,利用新定義進而求得的解析式.【詳解】(1)當時,,由于在上遞減,∴函數(shù)在上的值域為,故不存在常數(shù),使得成立,∴函數(shù)在上不是有界函數(shù)(2)在上是以3為上界的有界函數(shù),即,令,則,即由得,令,在上單調(diào)遞減,所以由得,令,在上單調(diào)遞增,所以所以;(3)在上遞減,,即,當時,即當時,當時,即當時,∴.【點睛】本題主要考查學生利用所學知識解決創(chuàng)新問題的能力,涉及到函數(shù)求值域的有關方法,以及恒成立問題的常見解決思想.20、(1);(2).【解析】

(1)直接由向量的模長公式進行計算.

(2)由向量平行的公式可得,再用余弦的二倍角和正弦的和角公式,然后再轉(zhuǎn)化為的式子,代值即可.【詳解】(1)因為,所以,所以.(2)由得,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論