版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)學(xué)校2025屆數(shù)學(xué)高一下期末考試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知M為z軸上一點(diǎn),且點(diǎn)M到點(diǎn)與點(diǎn)的距離相等,則點(diǎn)M的坐標(biāo)為()A. B. C. D.2.已知是所在平面內(nèi)一點(diǎn),且滿足,則為A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形3.已知在三角形中,,點(diǎn)都在同一個(gè)球面上,此球面球心到平面的距離為,點(diǎn)是線段的中點(diǎn),則點(diǎn)到平面的距離是()A. B. C. D.14.已知,則下列不等式中成立的是()A. B. C. D.5.已知向量與的夾角為,,,當(dāng)時(shí),實(shí)數(shù)為()A. B. C. D.6.已知函數(shù)向左平移個(gè)單位長(zhǎng)度后,其圖象關(guān)于軸對(duì)稱,則的最小值為()A. B. C. D.7.在下列結(jié)論中,正確的為()A.兩個(gè)有共同起點(diǎn)的單位向量,其終點(diǎn)必相同B.向量與向量的長(zhǎng)度相等C.向量就是有向線段D.零向量是沒(méi)有方向的8.如圖所示,4個(gè)散點(diǎn)圖中,不適合用線性回歸模型擬合其中兩個(gè)變量的是()A. B.C. D.9.在四邊形ABCD中,若,則四邊形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四邊形10.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則的值為_(kāi)______.12.在中,,,,則的面積是__________.13.在平面直角坐標(biāo)系中,點(diǎn),,若直線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍是_____.14.已知、的取值如表所示:01342.24.34.86.7從散點(diǎn)圖分析,與線性相關(guān),且,則______.15.如圖,在等腰直角三角形ABC中,,,以AB為直徑在外作半圓O,P是半圓弧AB上的動(dòng)點(diǎn),點(diǎn)Q在斜邊BC上,若,則的取值范圍是________.16.若三角形ABC的三個(gè)角A,B,C成等差數(shù)列,a,b,c分別為角A,B,C的對(duì)邊,三角形ABC的面積,則b的最小值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.設(shè).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若關(guān)于的不等式的解集為,求的值.18.設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.如圖,在三棱柱中,側(cè)棱垂直于底面,,分別是的中點(diǎn).(1)求證:平面;(2)求三棱錐的體積.20.設(shè)數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足,,.(1)求數(shù)列、的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)設(shè)數(shù)列,試問(wèn)是否存在正整數(shù),,使,,成等差數(shù)列?若存在,求出,的值;若不存在,請(qǐng)說(shuō)明理由.21.從全校參加科技知識(shí)競(jìng)賽初賽的學(xué)生試卷中,抽取一個(gè)樣本,考察競(jìng)賽的成績(jī)分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長(zhǎng)方形的高之比是,最后一組的頻數(shù)是6.請(qǐng)結(jié)合頻率分布直方圖提供的信息,解答下列問(wèn)題:(1)樣本的容量是多少?(2)求樣本中成績(jī)?cè)诜值膶W(xué)生人數(shù);(3)從樣本中成績(jī)?cè)?0.5分以上的同學(xué)中隨機(jī)地抽取2人參加決賽,求最高分甲被抽到的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)題意先設(shè),再根據(jù)空間兩點(diǎn)間的距離公式,得到,再由點(diǎn)M到點(diǎn)與點(diǎn)的距離相等建立方程求解.【詳解】設(shè)根據(jù)空間兩點(diǎn)間的距離公式得因?yàn)辄c(diǎn)M到點(diǎn)與點(diǎn)的距離相等所以解得所以故選:C【點(diǎn)睛】本題主要考查了空間兩點(diǎn)間的距離公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、B【解析】
由向量的減法法則,將題中等式化簡(jiǎn)得,進(jìn)而得到,由此可得以為鄰邊的平行四邊形為矩形,得的形狀是直角三角形?!驹斀狻恳?yàn)椋?,因?yàn)?,所以,因?yàn)?,所以,由此可得以為鄰邊的平行四邊形為矩形,所以,得的形狀是直角三角形?!军c(diǎn)睛】本題給出向量等式,判斷三角形的形狀,著重考查平面向量的加法、減法法則和三角形的形狀判斷等知識(shí)。3、D【解析】
利用數(shù)形結(jié)合,計(jì)算球的半徑,可得半徑為2,進(jìn)一步可得該幾何體為正四面體,可得結(jié)果.【詳解】如圖據(jù)題意可知:點(diǎn)都在同一個(gè)球面上可知為的外心,故球心必在過(guò)且垂直平面的垂線上因?yàn)椋郧蛐牡狡矫娴木嚯x為即,又所以同理可知:所以該幾何體為正四面體,由點(diǎn)是線段的中點(diǎn)所以,且平面,故平面所以點(diǎn)到平面的距離是故選:D【點(diǎn)睛】本題考查空間幾何體的應(yīng)用,以及點(diǎn)到面的距離,本題難點(diǎn)在于得到該幾何體為正四面體,屬中檔題.4、D【解析】
由,,計(jì)算可判斷;由,,計(jì)算可判斷;由,可判斷;作差可判斷.【詳解】解:,當(dāng),時(shí),可得,故錯(cuò)誤;當(dāng),時(shí),,故錯(cuò)誤;當(dāng),,故錯(cuò)誤;,即,故正確.故選:.【點(diǎn)睛】本題考查不等式的性質(zhì),考查特殊值的運(yùn)用,以及運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】
利用平面向量數(shù)量積的定義計(jì)算出的值,由可得出,利用平面向量數(shù)量積的運(yùn)算律可求得實(shí)數(shù)的值.【詳解】,,向量與的夾角為,,,,解得.故選:B.【點(diǎn)睛】本題考查利用向量垂直求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】
根據(jù)函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象關(guān)于軸對(duì)稱,即為偶函數(shù).,求得的最小值.【詳解】把函數(shù)向左平移個(gè)單位長(zhǎng)度后.可得的圖象.再根據(jù)所得圖象關(guān)于軸對(duì)稱,即為偶函數(shù).所以即,當(dāng)時(shí),的值最小.所以的最小值為:故選:A【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.7、B【解析】
逐一分析選項(xiàng),得到答案.【詳解】A.單位向量的方向任意,所以當(dāng)起點(diǎn)相同時(shí),終點(diǎn)在以起點(diǎn)為圓心的單位圓上,終點(diǎn)不一定相同,所以選項(xiàng)不正確;B.向量與向量是相反向量,方向相反,長(zhǎng)度相等,所以選項(xiàng)正確;C.向量是既有大小,又有方向的向量,可以用有向線段表示,但不能說(shuō)向量就是有向線段,所以選項(xiàng)不正確;D.規(guī)定零向量的方向任意,而不是沒(méi)有方向,所以選項(xiàng)不正確.故選B.【點(diǎn)睛】本題考查了向量的基本概念,屬于基礎(chǔ)題型.8、A【解析】
根據(jù)線性回歸模型建立方法,分析選項(xiàng),找出散點(diǎn)比較分散且無(wú)任何規(guī)律的選項(xiàng)可得答案.【詳解】根據(jù)題意,適合用線性回歸擬合其中兩個(gè)變量的散點(diǎn)圖必須散點(diǎn)分布比較集中,且大體接近某一條直線,分析選項(xiàng)可得A選項(xiàng)的散點(diǎn)圖雜亂無(wú)章,最不符合條件.故選A【點(diǎn)睛】本題考查了統(tǒng)計(jì)案例散點(diǎn)圖,屬于基礎(chǔ)題.9、D【解析】試題分析:因?yàn)?根據(jù)向量的三角形法則,有,則可知,故四邊形ABCD為平行四邊形.考點(diǎn):向量的三角形法則與向量的平行四邊形法則.10、B【解析】
利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識(shí)的綜合應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
把已知等式展開(kāi)利用二倍角余弦公式及兩角和的余弦公式,整理后兩邊平方求解.【詳解】解:由,得,,則,兩邊平方得:,即.故答案為.【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn)求值,考查倍角公式的應(yīng)用,是基礎(chǔ)題.12、【解析】
計(jì)算,等腰三角形計(jì)算面積,作底邊上的高,計(jì)算得到答案.【詳解】,過(guò)C作于D,則故答案為【點(diǎn)睛】本題考查了三角形面積計(jì)算,屬于簡(jiǎn)單題.13、.【解析】
設(shè)由,求出點(diǎn)軌跡方程,可判斷其軌跡為圓,點(diǎn)又在直線,轉(zhuǎn)化為直線與圓有公共點(diǎn),只需圓心到直線的距離小于半徑,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】設(shè),,,,整理得,又點(diǎn)在直線,直線與圓共公共點(diǎn),圓心到直線的距離,即.故答案為:.【點(diǎn)睛】本題考查求曲線的軌跡方程,考查直線與圓的位置關(guān)系,屬于中檔題.14、【解析】
根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【點(diǎn)睛】本題考查利用回歸直線求實(shí)際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過(guò),從而可構(gòu)造出關(guān)于的方程.15、【解析】
建立直角坐標(biāo)系,得出的坐標(biāo),利用數(shù)量積的坐標(biāo)表示得出,結(jié)合正弦函數(shù)的單調(diào)性得出的取值范圍.【詳解】取中點(diǎn)為,建立如下圖所示的直角坐標(biāo)系則,設(shè),,則,則設(shè)點(diǎn),則,則當(dāng),即時(shí),取最大值當(dāng),即時(shí),取最小值則的取值范圍是故答案為:【點(diǎn)睛】本題主要考查了利用數(shù)量積求參數(shù)以及求正弦型函數(shù)的最值,屬于較難題.16、【解析】
先求出,再根據(jù)面積得到,再利用余弦定理和基本不等式得解.【詳解】由題得,所以.由余弦定理得,當(dāng)且僅當(dāng)時(shí)取等.所以b的最小值是.故答案為:【點(diǎn)睛】本題主要考查余弦定理解三角形,考查基本不等式求最值,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)代入?yún)?shù)值,解二次不等式即可;(2)不等式,即,故得到1,2是方程的兩實(shí)根,根據(jù)韋達(dá)定理得到數(shù)值.【詳解】(1)當(dāng)時(shí),不等式即為,∴或,因此原不等式的解集為.(2)不等式,即,由題意知,且1,2是方程的兩實(shí)根,因此.【點(diǎn)睛】這個(gè)題目考查了二次不等式的解法,以及二次函數(shù)和二次不等式的關(guān)系,考查了二次不等式的韋達(dá)定理的應(yīng)用,屬于基礎(chǔ)題.18、(1);(2)【解析】
(1)由,且,可得當(dāng)也適合,;(2)∵19、(1)證明見(jiàn)解析(2)【解析】試題分析:(1)做輔助線,先證及四邊形為平行四邊形平面;(2)利用勾股定理求得.試題解析:(1)證明:取中點(diǎn),連接,則∵是的中點(diǎn),∴;∵是的中點(diǎn),∴,∴四邊形為平行四邊形,∴,∵平面,平面,∴平面;(2)∵,∴,∴20、(1);.(2)(3)存在,或者,【解析】
(1)令,得,故,代入等式得到,計(jì)算得到.(2)利用錯(cuò)位相減法得到前N項(xiàng)和.(3),假設(shè)存在正整數(shù),,使成等差數(shù)列,則,解得或者.【詳解】(1)令,得,所以將代入,得所以數(shù)列是以1為首項(xiàng),2為公比的等比數(shù)列,即.(2)兩式相減得到化簡(jiǎn)得到.(3),假設(shè)存在正整數(shù),,使成等差數(shù)列則,即,因?yàn)椋瑸檎麛?shù),所以存在或者,使得成等差數(shù)列.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的通項(xiàng)公式,錯(cuò)位相減法,綜合性大,技巧性強(qiáng),意在考查學(xué)生的綜合應(yīng)用能力.21、(1)48;(2)30;(3)【解析】
(1)設(shè)樣本容量為,列方程求解即可;(2)根據(jù)比例列式求解即可;(3)根據(jù)比例得成績(jī)?cè)?0.5分以上的同學(xué)有6人,抽取2人參加決賽,列舉出總的基本事件個(gè)數(shù),然后列舉出最高分甲被抽到的基
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024金融科技服務(wù)平臺(tái)業(yè)務(wù)協(xié)作合同
- 2025年度智能溫室大棚建設(shè)與生態(tài)農(nóng)業(yè)示范區(qū)承包合同4篇
- 2024鐵路工程勘察設(shè)計(jì)合同范本3篇
- 2025年度物流園區(qū)車(chē)位購(gòu)置及倉(cāng)儲(chǔ)服務(wù)合同4篇
- 2024水保編制技術(shù)服務(wù)合同-水利設(shè)施養(yǎng)護(hù)與管理3篇
- 2024酒銷售合同范本
- 2024版煤炭運(yùn)輸合同薦
- 2025年度上市公司股權(quán)轉(zhuǎn)讓代辦服務(wù)協(xié)議4篇
- 2025年度商鋪出售合同模板(含廣告位使用權(quán))4篇
- 2025年度環(huán)保技術(shù)研發(fā)與應(yīng)用承包協(xié)議6篇
- 神經(jīng)外科進(jìn)修匯報(bào)課件
- 2024老年人靜脈血栓栓塞癥防治中國(guó)專家共識(shí)(完整版)
- 騰訊營(yíng)銷師認(rèn)證考試題庫(kù)(附答案)
- 鄰近鐵路營(yíng)業(yè)線施工安全監(jiān)測(cè)技術(shù)規(guī)程 (TB 10314-2021)
- 四年級(jí)上冊(cè)脫式計(jì)算100題及答案
- 資本市場(chǎng)與財(cái)務(wù)管理
- 河南近10年中考真題數(shù)學(xué)含答案(2023-2014)
- 八年級(jí)上學(xué)期期末家長(zhǎng)會(huì)課件
- 2024年大學(xué)試題(宗教學(xué))-佛教文化歷年考試高頻考點(diǎn)試題附帶答案
- HGE系列電梯安裝調(diào)試手冊(cè)(ELS05系統(tǒng)SW00004269,A.4 )
- 尤文肉瘤的護(hù)理查房
評(píng)論
0/150
提交評(píng)論