版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市東麗區(qū)民族中學2025屆高一下數(shù)學期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,已知矩形中,,,該矩形所在的平面內(nèi)一點滿足,記,,,則()A.存在點,使得 B.存在點,使得C.對任意的點,有 D.對任意的點,有2.在鈍角中,角的對邊分別是,若,則的面積為A. B. C. D.3.在中,內(nèi)角,,的對邊分別為,,,若,,,則的最小角為()A. B. C. D.4.已知向量a→=(2,0),|b→|=1,a→?A.2π3 B.π3 C.π5.已知關(guān)于的不等式的解集是,則的值是()A. B. C. D.6.設(shè),,,則的最小值為()A.2 B.4 C. D.7.用數(shù)學歸納法證明這一不等式時,應注意必須為()A. B., C., D.,8.在北京召開的國際數(shù)學家大會的會標如圖所示,它是由個相同的直角三角形與中間的小正方形拼成的一個大正方形,若直角三角形中較小的銳角為,大正方形的面積是,小正方形的面積是,則()A. B. C. D.9.若直線與直線平行,則的值為()A.1 B.﹣1 C.±1 D.010.的內(nèi)角的對邊分別為,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若關(guān)于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},則關(guān)于x的不等式cx2+bx+a>0的解集是____________.12.將角度化為弧度:________.13.弧度制是數(shù)學上一種度量角的單位制,數(shù)學家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個扇形的弧長等于其半徑長,則該扇形圓心角的弧度數(shù)是__________.14.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.15.若圓與圓的公共弦長為,則________.16.已知無窮等比數(shù)列的所有項的和為,則首項的取值范圍為_____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知中,角的對邊分別為.已知,.(Ⅰ)求角的大?。?Ⅱ)設(shè)點滿足,求線段長度的取值范圍.18.已知所在平面內(nèi)一點,滿足:的中點為,的中點為,的中點為.設(shè),,如圖,試用,表示向量.19.已知等差數(shù)列的前項的和為,,.(1)求數(shù)列的通項公式;(2)設(shè),記數(shù)列的前項和為,求.20.將函數(shù)的圖像向右平移1個單位,得到函數(shù)的圖像.(1)求的單調(diào)遞增區(qū)間;(3)設(shè)為坐標原點,直線與函數(shù)的圖像自左至右相交于點,,,求的值.21.已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】以為原點,以所在直線為軸、軸建立坐標系,則,,且在矩形內(nèi),可設(shè),,,,,,錯誤,正確,,,錯誤,錯誤,故選C.【方法點睛】本題主要考查平面向量數(shù)量積公式的坐標表示,屬于中檔題.平面向量數(shù)量積公式有兩種形式,一是幾何形式,,二是坐標形式,(求最值問題與求范圍問題往往運用坐標形式),主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).2、A【解析】
根據(jù)已知求出b的值,再求三角形的面積.【詳解】在中,,由余弦定理得:,即,解得:或.∵是鈍角三角形,∴(此時為直角三角形舍去).∴的面積為.故選A.【點睛】本題主要考查余弦定理解三角形和三角形的面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.3、A【解析】
由三角形大邊對大角可知所求角為角,利用余弦定理可求得,進而得到結(jié)果.【詳解】的最小角為角,則故選:【點睛】本題考查利用余弦定理解三角形的問題,關(guān)鍵是明確三角形中大邊對大角的特點,進而根據(jù)余弦定理求得所求角的余弦值.4、A【解析】
直接利用向量夾角公式得到答案.【詳解】解:向量a→=(2,0),|b→|=1,a可得cos<a→則a→與b的夾角為:2π故選:A.【點睛】本題考查向量的數(shù)量積的應用,向量的夾角的求法,是基本知識的考查.5、A【解析】
先利用韋達定理得到關(guān)于a,b的方程組,解方程組即得a,b的值,即得解.【詳解】由題得,所以a+b=7.故選:A【點睛】本題主要考查一元二次不等式的解集,意在考查學生對該知識的理解掌握水平和分析推理能力.6、D【解析】
利用基本不等式可得,再結(jié)合代入即可得出答案.【詳解】解:∵,,,∴,∴,當且僅當即,時等號成立,∴,故選:D.【點睛】本題主要考查基本不等式求最值,要注意條件“一正二定三相等”,屬于中檔題.7、D【解析】
根據(jù)題意驗證,,時,不等式不成立,當時,不等式成立,即可得出答案.【詳解】解:當,,時,顯然不等式不成立,當時,不等式成立,故用數(shù)學歸納法證明這一不等式時,應注意必須為,故選:.【點睛】本題考查數(shù)學歸納法的應用,屬于基礎(chǔ)題.8、C【解析】
根據(jù)題意即可算出每個直角三角形的面積,再根據(jù)勾股定理和面積關(guān)系即可算出三角形的兩條直角邊.從而算出【詳解】由題意得直角三角形的面積,設(shè)三角形的邊長分別為,則有,所以,所以,選C.【點睛】本題主要考查了三角形的面積公式以及直角三角形中,正弦、余弦的計算,屬于基礎(chǔ)題.9、B【解析】
兩直線平行表示斜率相同或者都垂直x軸,即?!驹斀狻慨敃r,兩直線分別為:與直線,不平行,當時,直線化為:直線化為:,兩直線平行,所以,,解得:,當時,兩直線重合,不符,所以,【點睛】直線平行即表示斜率相同,且截距不同,如果截距相同則表示同一條直線。10、B【解析】
首先通過正弦定理將邊化角,于是求得,于是得到答案.【詳解】根據(jù)正弦定理得:,即,而,所以,又為三角形內(nèi)角,所以,故選B.【點睛】本題主要考查正弦定理的運用,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、{x|-1<x<-}【解析】
觀察兩個不等式的系數(shù)間的關(guān)系,得出其根的關(guān)系,再由和的正負可得解.【詳解】由已知可得:的兩個根是和,且將方程兩邊同時除以,得,所以的兩個根是和,且解集是故得解.【點睛】本題考查一元二次方程和一元二次不等式間的關(guān)系,屬于中檔題.12、【解析】
根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.13、1【解析】設(shè)扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是.14、4【解析】
由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【點睛】解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉(zhuǎn)化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.15、【解析】將兩個方程兩邊相減可得,即代入可得,則公共弦長為,所以,解之得,應填.16、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關(guān)系式,由此可求出實數(shù)的取值范圍.【詳解】設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項的和為,則,.當時,則,此時,;當時,則,此時,.因此,首項的取值范圍是.故答案為:.【點睛】本題考查利用無窮等比數(shù)列的和求首項的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(I)利用數(shù)量積的定義和三角形面積公式可求得,從而得角;(II)由得,平方后可求得,即中線長,結(jié)合可得最小值,從而得取值范圍.【詳解】(Ⅰ)因為,所以因為,所以得以兩式相除得所以(Ⅱ)因為,所以因為,所以所以所以.當且僅當時取得等號所以線段長度的取值范圍時.【點睛】本題考查平面向量的數(shù)量積,考查平面向量的線性運算、三角形面積公式,解題關(guān)鍵是把中線向量表示為,這樣把線段長度(向量模)轉(zhuǎn)化為向量的數(shù)量積.18、【解析】
由為的中點,則可得,為的中點,則可得,從中可以求出向量,得到答案.【詳解】由為的中點,則可得.又為的中點,所以【點睛】本題考查向量的基本定理和向量的加減法的法則,屬于中檔題.19、(1)數(shù)列的通項公式為(2)【解析】試題分析:(1)建立方程組;(2)由(1)得:進而由裂項相消法求得.試題解析:(1)設(shè)等差數(shù)列的公差為,由題意知解得.所以數(shù)列的通項公式為(2)∴20、(1)();(2)【解析】
(1)通過“左加右減”可得到函數(shù)的解析式,從而求得的單調(diào)遞增區(qū)間;(2)先求得直線與軸的交點為,則,又,關(guān)于點對稱,所以,從而.【詳解】(1)令,,的單調(diào)遞增區(qū)間是()(2)直線與軸的交點為,即為函數(shù)的對稱中心,且,關(guān)于點對稱,【點睛】本題主要考查三角函數(shù)平移,增減區(qū)間的求解,對稱中心的性質(zhì)及向量的基本運算,意在考查學生的分析能力和計算能力.21、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024金融科技服務平臺業(yè)務協(xié)作合同
- 2025年度智能溫室大棚建設(shè)與生態(tài)農(nóng)業(yè)示范區(qū)承包合同4篇
- 2024鐵路工程勘察設(shè)計合同范本3篇
- 2025年度物流園區(qū)車位購置及倉儲服務合同4篇
- 2024水保編制技術(shù)服務合同-水利設(shè)施養(yǎng)護與管理3篇
- 2024酒銷售合同范本
- 2024版煤炭運輸合同薦
- 2025年度上市公司股權(quán)轉(zhuǎn)讓代辦服務協(xié)議4篇
- 2025年度商鋪出售合同模板(含廣告位使用權(quán))4篇
- 2025年度環(huán)保技術(shù)研發(fā)與應用承包協(xié)議6篇
- 神經(jīng)外科進修匯報課件
- 2024老年人靜脈血栓栓塞癥防治中國專家共識(完整版)
- 騰訊營銷師認證考試題庫(附答案)
- 鄰近鐵路營業(yè)線施工安全監(jiān)測技術(shù)規(guī)程 (TB 10314-2021)
- 四年級上冊脫式計算100題及答案
- 資本市場與財務管理
- 河南近10年中考真題數(shù)學含答案(2023-2014)
- 八年級上學期期末家長會課件
- 2024年大學試題(宗教學)-佛教文化歷年考試高頻考點試題附帶答案
- HGE系列電梯安裝調(diào)試手冊(ELS05系統(tǒng)SW00004269,A.4 )
- 尤文肉瘤的護理查房
評論
0/150
提交評論