版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
導(dǎo)數(shù)應(yīng)用的題型與方法一.復(fù)習(xí)目標(biāo):1.了解導(dǎo)數(shù)的概念,能利用導(dǎo)數(shù)定義求導(dǎo)數(shù).掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念.了解曲線的切線的概念.在了解瞬時(shí)速度的基礎(chǔ)上抽象出變化率的概念.2.熟記基本導(dǎo)數(shù)公式(c,xSKIPIF1<0(m為有理數(shù)),sinx,cosx,eSKIPIF1<0,aSKIPIF1<0,lnx,logSKIPIF1<0x的導(dǎo)數(shù))。掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù),利能夠用導(dǎo)數(shù)求單調(diào)區(qū)間,求一個(gè)函數(shù)的最大(小)值的問(wèn)題,掌握導(dǎo)數(shù)的基本應(yīng)用.3.了解函數(shù)的和、差、積的求導(dǎo)法則的推導(dǎo),掌握兩個(gè)函數(shù)的商的求導(dǎo)法則。能正確運(yùn)用函數(shù)的和、差、積的求導(dǎo)法則及已有的導(dǎo)數(shù)公式求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。4.了解復(fù)合函數(shù)的概念。會(huì)將一個(gè)函數(shù)的復(fù)合過(guò)程進(jìn)行分解或?qū)讉€(gè)函數(shù)進(jìn)行復(fù)合。掌握復(fù)合函數(shù)的求導(dǎo)法則,并會(huì)用法則解決一些簡(jiǎn)單問(wèn)題。二.考試要求:⑴了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念。
⑵熟記基本導(dǎo)數(shù)公式(c,xSKIPIF1<0(m為有理數(shù)),sinx,cosx,eSKIPIF1<0,aSKIPIF1<0,lnx,logSKIPIF1<0x的導(dǎo)數(shù))。掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。
⑶了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)要極值點(diǎn)兩側(cè)異號(hào)),會(huì)求一些實(shí)際問(wèn)題(一般指單峰函數(shù))的最大值和最小值。三.教學(xué)過(guò)程:(Ⅰ)基礎(chǔ)知識(shí)詳析導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問(wèn)題的有力工具。在高中階段對(duì)于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面:1.導(dǎo)數(shù)的常規(guī)問(wèn)題:(1)刻畫(huà)函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問(wèn)題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于SKIPIF1<0次多項(xiàng)式的導(dǎo)數(shù)問(wèn)題屬于較難類型。2.關(guān)于函數(shù)特征,最值問(wèn)題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問(wèn)題是一種重要類型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。4.曲線的切線在初中學(xué)過(guò)圓的切線,直線和圓有惟一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,惟一的公共點(diǎn)叫做切點(diǎn).圓是一種特殊的曲線,能不能將圓的切線的概念推廣為一段曲線的切線,即直線和曲線有惟一公共點(diǎn)時(shí),直線叫做曲線過(guò)該點(diǎn)的切線,顯然這種推廣是不妥當(dāng)?shù)模鐖D3—1中的曲線C是我們熟知的正弦曲線y=sinx.直線SKIPIF1<0與曲線C有惟一公共點(diǎn)M,但我們不能說(shuō)直線SKIPIF1<0與曲線C相切;而直線SKIPIF1<0盡管與曲線C有不止一個(gè)公共點(diǎn),我們還是說(shuō)直線SKIPIF1<0是曲線C在點(diǎn)N處的切線.因此,對(duì)于一般的曲線,須重新尋求曲線的切線的定義.所以課本利用割線的極限位置來(lái)定義了曲線的切線.SKIPIF1<05.瞬時(shí)速度在高一物理學(xué)習(xí)直線運(yùn)動(dòng)的速度時(shí),涉及過(guò)瞬時(shí)速度的一些知識(shí),物理教科書(shū)中首先指出:運(yùn)動(dòng)物體經(jīng)過(guò)某一時(shí)刻(或某一位置)的速度叫做瞬時(shí)速度,然后從實(shí)際測(cè)量速度出發(fā),結(jié)合汽車速度儀的使用,對(duì)瞬時(shí)速度作了說(shuō)明.物理課上對(duì)瞬時(shí)速度只給出了直觀的描述,有了極限工具后,本節(jié)教材中是用物體在一段時(shí)間運(yùn)動(dòng)的平均速度的極限來(lái)定義瞬時(shí)速度.6.導(dǎo)數(shù)的定義導(dǎo)數(shù)定義與求導(dǎo)數(shù)的方法是本節(jié)的重點(diǎn),推導(dǎo)導(dǎo)數(shù)運(yùn)算法則與某些導(dǎo)數(shù)公式時(shí),都是以此為依據(jù).對(duì)導(dǎo)數(shù)的定義,我們應(yīng)注意以下三點(diǎn):(1)△x是自變量x在SKIPIF1<0處的增量(或改變量).(2)導(dǎo)數(shù)定義中還包含了可導(dǎo)或可微的概念,如果△x→0時(shí),SKIPIF1<0有極限,那么函數(shù)y=f(x)在點(diǎn)SKIPIF1<0處可導(dǎo)或可微,才能得到f(x)在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù).(3)如果函數(shù)y=f(x)在點(diǎn)SKIPIF1<0處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)SKIPIF1<0處連續(xù)(由連續(xù)函數(shù)定義可知).反之不一定成立.例如函數(shù)y=|x|在點(diǎn)x=0處連續(xù),但不可導(dǎo).由導(dǎo)數(shù)定義求導(dǎo)數(shù),是求導(dǎo)數(shù)的基本方法,必須嚴(yán)格按以下三個(gè)步驟進(jìn)行:(1)求函數(shù)的增量SKIPIF1<0;(2)求平均變化率SKIPIF1<0;(3)取極限,得導(dǎo)數(shù)SKIPIF1<0。7.導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)SKIPIF1<0處的切線的斜率.由此,可以利用導(dǎo)數(shù)求曲線的切線方程.具體求法分兩步:(1)求出函數(shù)y=f(x)在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)SKIPIF1<0處的切線的斜率;(2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為SKIPIF1<0特別地,如果曲線y=f(x)在點(diǎn)SKIPIF1<0處的切線平行于y軸,這時(shí)導(dǎo)數(shù)不存,根據(jù)切線定義,可得切線方程為SKIPIF1<08.和(或差)的導(dǎo)數(shù)對(duì)于函數(shù)SKIPIF1<0的導(dǎo)數(shù),如何求呢?我們不妨先利用導(dǎo)數(shù)的定義來(lái)求。SKIPIF1<0SKIPIF1<0我們不難發(fā)現(xiàn)SKIPIF1<0,即兩函數(shù)和的導(dǎo)數(shù)等于這兩函數(shù)的導(dǎo)數(shù)的和。由此我們猜測(cè)在一般情況下結(jié)論成立。事實(shí)上教材中證明了我們的猜想,這就是兩個(gè)函數(shù)的和(或差)的求導(dǎo)法則。9.積的導(dǎo)數(shù)兩個(gè)函數(shù)的積的求導(dǎo)法則的證明是本節(jié)的一個(gè)難點(diǎn),證明過(guò)程中變形的關(guān)鍵是依據(jù)導(dǎo)數(shù)定義的結(jié)構(gòu)形式。(具體過(guò)程見(jiàn)課本P120)說(shuō)明:(1)SKIPIF1<0;(2)若c為常數(shù),則(cu)′=cu′。10.商的導(dǎo)數(shù)兩個(gè)函數(shù)的商的求導(dǎo)法則,課本中未加證明,只要求記住并能運(yùn)用就可以?,F(xiàn)補(bǔ)充證明如下:設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0因?yàn)関(x)在點(diǎn)x處可導(dǎo),所以它在點(diǎn)x處連續(xù),于是△x→0時(shí),v(x+△x)→v(x),從而SKIPIF1<0即SKIPIF1<0。說(shuō)明:(1)SKIPIF1<0;(2)SKIPIF1<0學(xué)習(xí)了函數(shù)的和、差、積、商的求導(dǎo)法則后,由常函數(shù)、冪函數(shù)及正、余弦函數(shù)經(jīng)加、減、乘、除運(yùn)算得到的簡(jiǎn)單的函數(shù),均可利用求導(dǎo)法則與導(dǎo)數(shù)公式求導(dǎo),而不需要回到導(dǎo)數(shù)的定義去求。11.導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系㈠SKIPIF1<0與SKIPIF1<0為增函數(shù)的關(guān)系。SKIPIF1<0能推出SKIPIF1<0為增函數(shù),但反之不一定。如函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,但SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0為增函數(shù)的充分不必要條件。㈡SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0為增函數(shù)的關(guān)系。若將SKIPIF1<0的根作為分界點(diǎn),因?yàn)橐?guī)定SKIPIF1<0,即摳去了分界點(diǎn),此時(shí)SKIPIF1<0為增函數(shù),就一定有SKIPIF1<0?!喈?dāng)SKIPIF1<0時(shí),SKIPIF1<0是SKIPIF1<0為增函數(shù)的充分必要條件。㈢SKIPIF1<0與SKIPIF1<0為增函數(shù)的關(guān)系。SKIPIF1<0為增函數(shù),一定可以推出SKIPIF1<0,但反之不一定,因?yàn)镾KIPIF1<0,即為SKIPIF1<0或SKIPIF1<0。當(dāng)函數(shù)在某個(gè)區(qū)間內(nèi)恒有SKIPIF1<0,則SKIPIF1<0為常數(shù),函數(shù)不具有單調(diào)性?!郤KIPIF1<0是SKIPIF1<0為增函數(shù)的必要不充分條件。函數(shù)的單調(diào)性是函數(shù)一條重要性質(zhì),也是高中階段研究的重點(diǎn),我們一定要把握好以上三個(gè)關(guān)系,用導(dǎo)數(shù)判斷好函數(shù)的單調(diào)性。因此新教材為解決單調(diào)區(qū)間的端點(diǎn)問(wèn)題,都一律用開(kāi)區(qū)間作為單調(diào)區(qū)間,避免討論以上問(wèn)題,也簡(jiǎn)化了問(wèn)題。但在實(shí)際應(yīng)用中還會(huì)遇到端點(diǎn)的討論問(wèn)題,要謹(jǐn)慎處理。㈣單調(diào)區(qū)間的求解過(guò)程,已知SKIPIF1<0(1)分析SKIPIF1<0的定義域;(2)求導(dǎo)數(shù)SKIPIF1<0(3)解不等式SKIPIF1<0,解集在定義域內(nèi)的部分為增區(qū)間(4)解不等式SKIPIF1<0,解集在定義域內(nèi)的部分為減區(qū)間我們?cè)趹?yīng)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性時(shí)一定要搞清以下三個(gè)關(guān)系,才能準(zhǔn)確無(wú)誤地判斷函數(shù)的單調(diào)性。以下以增函數(shù)為例作簡(jiǎn)單的分析,前提條件都是函數(shù)SKIPIF1<0在某個(gè)區(qū)間內(nèi)可導(dǎo)。㈤函數(shù)單調(diào)區(qū)間的合并函數(shù)單調(diào)區(qū)間的合并主要依據(jù)是函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞增,又知函數(shù)在SKIPIF1<0處連續(xù),因此SKIPIF1<0在SKIPIF1<0單調(diào)遞增。同理減區(qū)間的合并也是如此,即相鄰區(qū)間的單調(diào)性相同,且在公共點(diǎn)處函數(shù)連續(xù),則二區(qū)間就可以合并為以個(gè)區(qū)間。SKIPIF1<0SKIPIF1<0(1)SKIPIF1<0恒成立∴SKIPIF1<0為SKIPIF1<0上SKIPIF1<0∴對(duì)任意SKIPIF1<0不等式SKIPIF1<0恒成立(2)SKIPIF1<0恒成立∴SKIPIF1<0在SKIPIF1<0上SKIPIF1<0∴對(duì)任意SKIPIF1<0不等式SKIPIF1<0恒成立㈥注意事項(xiàng)1.導(dǎo)數(shù)概念的理解.2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問(wèn)題的最大值與最小值.復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過(guò)實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來(lái)對(duì)法則進(jìn)行了證明。對(duì)于復(fù)合函數(shù),以前我們只是見(jiàn)過(guò),沒(méi)有專門定義和介紹過(guò)它,課本中以描述性的方式對(duì)復(fù)合函數(shù)加以直觀定義,使我們對(duì)復(fù)合函數(shù)的的概念有一個(gè)初步的認(rèn)識(shí),再結(jié)合以后的例題、習(xí)題就可以逐步了解復(fù)合函數(shù)的概念。3.要能正確求導(dǎo),必須做到以下兩點(diǎn):(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。(2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。4.求復(fù)合函數(shù)的導(dǎo)數(shù),一般按以下三個(gè)步驟進(jìn)行:(1)適當(dāng)選定中間變量,正確分解復(fù)合關(guān)系;(2)分步求導(dǎo)(弄清每一步求導(dǎo)是哪個(gè)變量對(duì)哪個(gè)變量求導(dǎo));(3)把中間變量代回原自變量(一般是x)的函數(shù)。也就是說(shuō),首先,選定中間變量,分解復(fù)合關(guān)系,說(shuō)明函數(shù)關(guān)系y=f(μ),μ=f(x);然后將已知函數(shù)對(duì)中間變量求導(dǎo)SKIPIF1<0,中間變量對(duì)自變量求導(dǎo)SKIPIF1<0;最后求SKIPIF1<0,并將中間變量代回為自變量的函數(shù)。整個(gè)過(guò)程可簡(jiǎn)記為分解——求導(dǎo)——回代。熟練以后,可以省略中間過(guò)程。若遇多重復(fù)合,可以相應(yīng)地多次用中間變量。(Ⅱ)范例分析例1.SKIPIF1<0在SKIPIF1<0處可導(dǎo),則SKIPIF1<0SKIPIF1<0思路:SKIPIF1<0在SKIPIF1<0處可導(dǎo),必連續(xù)SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0SKIPIF1<0例2.已知f(x)在x=a處可導(dǎo),且f′(a)=b,求下列極限:(1)SKIPIF1<0;(2)SKIPIF1<0分析:在導(dǎo)數(shù)定義中,增量△x的形式是多種多樣,但不論△x選擇哪種形式,△y也必須選擇相對(duì)應(yīng)的形式。利用函數(shù)f(x)在SKIPIF1<0處可導(dǎo)的條件,可以將已給定的極限式恒等變形轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。解:(1)SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0說(shuō)明:只有深刻理解概念的本質(zhì),才能靈活應(yīng)用概念解題。解決這類問(wèn)題的關(guān)鍵是等價(jià)變形,使極限式轉(zhuǎn)化為導(dǎo)數(shù)定義的結(jié)構(gòu)形式。例3.觀察SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,是否可判斷,可導(dǎo)的奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。解:若SKIPIF1<0為偶函數(shù)SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0∴可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)另證:SKIPIF1<0∴可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)例4.(1)求曲線SKIPIF1<0在點(diǎn)(1,1)處的切線方程;(2)運(yùn)動(dòng)曲線方程為SKIPIF1<0,求t=3時(shí)的速度。分析:根據(jù)導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)的物理意義可知,函數(shù)y=f(x)在SKIPIF1<0處的導(dǎo)數(shù)就是曲線y=f(x)在點(diǎn)SKIPIF1<0處的切線的斜率。瞬時(shí)速度是位移函數(shù)S(t)對(duì)時(shí)間的導(dǎo)數(shù)。解:(1)SKIPIF1<0,SKIPIF1<0,即曲線在點(diǎn)(1,1)處的切線斜率k=0因此曲線SKIPIF1<0在(1,1)處的切線方程為y=1(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0。例5.求下列函數(shù)單調(diào)區(qū)間(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0SKIPIF1<0(4)SKIPIF1<0解:(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0時(shí)SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0(4)SKIPIF1<0定義域?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例6.求證下列不等式(1)SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0SKIPIF1<0證:(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0為SKIPIF1<0上SKIPIF1<0∴SKIPIF1<0SKIPIF1<0恒成立∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上SKIPIF1<0∴SKIPIF1<0SKIPIF1<0恒成立(2)原式SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0(3)令SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0例7.利用導(dǎo)數(shù)求和:(1)SKIPIF1<0;(2)SKIPIF1<0。分析:這兩個(gè)問(wèn)題可分別通過(guò)錯(cuò)位相減法及利用二項(xiàng)式定理來(lái)解決。轉(zhuǎn)換思維角度,由求導(dǎo)公式SKIPIF1<0,可聯(lián)想到它們是另外一個(gè)和式的導(dǎo)數(shù),利用導(dǎo)數(shù)運(yùn)算可使問(wèn)題的解決更加簡(jiǎn)捷。解:(1)當(dāng)x=1時(shí),SKIPIF1<0;當(dāng)x≠1時(shí),∵SKIPIF1<0,兩邊都是關(guān)于x的函數(shù),求導(dǎo)得SKIPIF1<0即SKIPIF1<0(2)∵SKIPIF1<0,兩邊都是關(guān)于x的函數(shù),求導(dǎo)得SKIPIF1<0。令x=1得SKIPIF1<0,即SKIPIF1<0。例8.求滿足條件的SKIPIF1<0(1)使SKIPIF1<0為SKIPIF1<0上增函數(shù)(2)使SKIPIF1<0為SKIPIF1<0上……(3)使SKIPIF1<0為SKIPIF1<0上SKIPIF1<0解:(1)SKIPIF1<0∴SKIPIF1<0SKIPIF1<0時(shí)SKIPIF1<0也成立∴SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0時(shí)SKIPIF1<0也成立∴SKIPIF1<0(3)SKIPIF1<0例9.(1)SKIPIF1<0求證SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0求證SKIPIF1<0(1)證:令SKIPIF1<0SKIPIF1<0∴SKIPIF1<0SKIPIF1<0原不等式SKIPIF1<0令SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0令SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0(2)令SKIPIF1<0上式也成立將各式相加SKIPIF1<0即SKIPIF1<0例10.(2003年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(天津卷,理工農(nóng)醫(yī)類19))設(shè)SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.分析:本小題主要考查導(dǎo)數(shù)的概念和計(jì)算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運(yùn)算能力.解:SKIPIF1<0.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0.SKIPIF1<0(i)當(dāng)SKIPIF1<0時(shí),對(duì)所有SKIPIF1<0,有SKIPIF1<0.即SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增.(ii)當(dāng)SKIPIF1<0時(shí),對(duì)SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)SKIPIF1<0在x=1處連續(xù),因此,函數(shù)SKIPIF1<0在(0,+SKIPIF1<0)內(nèi)單調(diào)遞增(iii)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0.因此,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,在區(qū)間SKIPIF1<0內(nèi)也單調(diào)遞增.令SKIPIF1<0,解得SKIPIF1<0.因此,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減.說(shuō)明:本題用傳統(tǒng)作差比較法無(wú)法劃分函數(shù)的單調(diào)區(qū)間,只有用導(dǎo)數(shù)才行,這是教材新增的內(nèi)容。其理論依據(jù)如下(人教版試驗(yàn)本第三冊(cè)P148):設(shè)函數(shù)SKIPIF1<0在某個(gè)區(qū)間內(nèi)可導(dǎo),如果SKIPIF1<0,則SKIPIF1<0為增函數(shù);如果SKIPIF1<0,則SKIPIF1<0為減函數(shù)。如果SKIPIF1<0,則SKIPIF1<0為常數(shù)。例11.已知拋物線SKIPIF1<0與直線y=x+2相交于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)的切線分別為SKIPIF1<0和SKIPIF1<0。(1)求A、B兩點(diǎn)的坐標(biāo);(2)求直線SKIPIF1<0與SKIPIF1<0的夾角。分析:理解導(dǎo)數(shù)的幾何意義是解決本例的關(guān)鍵。解(1)由方程組SKIPIF1<0解得A(-2,0),B(3,5)(2)由y′=2x,則SKIPIF1<0,SKIPIF1<0。設(shè)兩直線的夾角為θ,根據(jù)兩直線的夾角公式,SKIPIF1<0所以SKIPIF1<0說(shuō)明:本例中直線與拋物線的交點(diǎn)處的切線,就是該點(diǎn)處拋物線的切線。注意兩條直線的夾角公式有絕對(duì)值符號(hào)。例12.(2001年天津卷)設(shè)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上的偶函數(shù)。(I)求SKIPIF1<0的值;(II)證明SKIPIF1<0在SKIPIF1<0上是增函數(shù)。解:(I)依題意,對(duì)一切SKIPIF1<0有SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0對(duì)一切SKIPIF1<0成立,由此得到SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0。(II)證明:由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,此時(shí)SKIPIF1<0?!郤KIPIF1<0在SKIPIF1<0上是增函數(shù)。例13.(2000年全國(guó)、天津卷)設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0。(I)解不等式SKIPIF1<0;(II)證明:當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)函數(shù)。解1:(I)分類討論解無(wú)理不等式(略)。(II)作差比較(略)。解2:SKIPIF1<0(i)當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,此時(shí)SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)遞減函數(shù)。但SKIPIF1<0,因此,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0。(ii)當(dāng)SKIPIF1<0時(shí),解不等式SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上是單調(diào)遞減函數(shù)。解方程SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,∵SKIPIF1<0,∴當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上,(I)當(dāng)SKIPIF1<0時(shí),所給不等式的解集為:SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),所給不等式的解集為:SKIPIF1<0。(II)當(dāng)且僅當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上時(shí)單調(diào)函數(shù)。例14.(2002年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(新課程卷理科類20))已知SKIPIF1<0,函數(shù)SKIPIF1<0設(shè)SKIPIF1<0,記曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線為SKIPIF1<0。(Ⅰ)求SKIPIF1<0的方程;(Ⅱ)設(shè)SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,證明:①SKIPIF1<0②若SKIPIF1<0,則SKIPIF1<0解:(1)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,由此得切線SKIPIF1<0的方程SKIPIF1<0,(2)依題得,切線方程中令SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,(?。┯蒘KIPIF1<0,SKIPIF1<0,有SKIPIF1<0,及SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0。(ⅱ)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此,SKIPIF1<0,且由(?。?,SKIPIF1<0,所以SKIPIF1<0。例15.(2003年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(江蘇卷21))已知SKIPIF1<0為正整數(shù).(Ⅰ)設(shè)SKIPIF1<0;(Ⅱ)設(shè)SKIPIF1<0分析:本題主要考查導(dǎo)數(shù)、不等式證明等知識(shí),考查綜合運(yùn)用所數(shù)學(xué)知識(shí)解決問(wèn)題的能力。證明:(Ⅰ)因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0(Ⅱ)對(duì)函數(shù)SKIPIF1<0求導(dǎo)數(shù):SKIPIF1<0∴SKIPIF1<0SKIPIF1<0即對(duì)任意SKIPIF1<0(Ⅲ)、強(qiáng)化訓(xùn)練1.設(shè)函數(shù)f(x)在SKIPIF1<0處可導(dǎo),則SKIPIF1<0等于()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<02.若SKIPIF1<0,則SKIPIF1<0等于()A.SKIPIF1<0B.SKIPIF1<0C.3D.23.曲線SKIPIF1<0上切線平行于x軸的點(diǎn)的坐標(biāo)是()A.(-1,2)B.(1,-2)C.(1,2)D.(-1,2)或(1,-2)4.若函數(shù)f(x)的導(dǎo)數(shù)為f′(x)=-sinx,則函數(shù)圖像在點(diǎn)(4,f(4))處的切線的傾斜角為()A.90°B.0°C.銳角D.鈍角5.函數(shù)SKIPIF1<0在[0,3]上的最大值、最小值分別是() A.5,-15 B.5,-4 C.-4,-15 D.5,-166.一直線運(yùn)動(dòng)的物體,從時(shí)間t到t+△t時(shí),物體的位移為△s,那么SKIPIF1<0為()A.從時(shí)間t到t+△t時(shí),物體的平均速度B.時(shí)間t時(shí)該物體的瞬時(shí)速度C.當(dāng)時(shí)間為△t時(shí)該物體的速度D.從時(shí)間t到t+△t時(shí)位移的平均變化率7.關(guān)于函數(shù)SKIPIF1<0,下列說(shuō)法不正確的是()A.在區(qū)間(SKIPIF1<0,0)內(nèi),SKIPIF1<0為增函數(shù)B.在區(qū)間(0,2)內(nèi),SKIPIF1<0為減函數(shù)C.在區(qū)間(2,SKIPIF1<0)內(nèi),SKIPIF1<0為增函數(shù)D.在區(qū)間(SKIPIF1<0,0)SKIPIF1<0內(nèi),SKIPIF1<0為增函數(shù)8.對(duì)任意x,有SKIPIF1<0,f(1)=-1,則此函數(shù)為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<09.函數(shù)y=2x3-3x2-12x+5在[0,3]上的最大值與最小值分別是()A.5,-15B.5,4C.-4,-15D.5,-1610.設(shè)f(x)在SKIPIF1<0處可導(dǎo),下列式子中與SKIPIF1<0相等的是()(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0(4)SKIPIF1<0。A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)(4)11.(2003年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(上海卷理工農(nóng)醫(yī)類16))f(SKIPIF1<0)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示:令g(SKIPIF1<0)=af(SKIPIF1<0)+b,則下SKIPIF1<0列關(guān)于函數(shù)g(SKIPIF1<0)的敘述正確的是() SKIPIF1<0 A.若a<0,則函數(shù)g(SKIPIF1<0)的圖象關(guān)于原點(diǎn)對(duì)稱. B.若a=-1,-2<b<0,則方程g(SKIPIF1<0)=0有大于2的實(shí)根. C.若a≠0,b=2,則方程g(SKIPIF1<0)=0有兩個(gè)實(shí)根. D.若a≥1,b<2,則方程g(SKIPIF1<0)=0有三個(gè)實(shí)根.12.若函數(shù)f(x)在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù)存在,則它所對(duì)應(yīng)的曲線在點(diǎn)SKIPIF1<0處的切線方程是_____________。13.設(shè)SKIPIF1<0,則它與x軸交點(diǎn)處的切線的方程為_(kāi)_____________。14.設(shè)SKIPIF1<0,則SKIPIF1<0_____________。15.垂直于直線2x-6y+1=0,且與曲線SKIPIF1<0相切的直線的方程是________.
16.已知曲線SKIPIF1<0,則SKIPIF1<0_____________。17.y=x2ex的單調(diào)遞增區(qū)間是18.曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為_(kāi)___________。19.P是拋物線SKIPIF1<0上的點(diǎn),若過(guò)點(diǎn)P的切線方程與直線SKIPIF1<0垂直,則過(guò)P點(diǎn)處的切線方程是____________。20.在拋物線SKIPIF1<0上依次取兩點(diǎn),它們的橫坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,若拋物線上過(guò)點(diǎn)P的切線與過(guò)這兩點(diǎn)的割線平行,則P點(diǎn)的坐標(biāo)為_(kāi)____________。21.曲線SKIPIF1<0在點(diǎn)A處的切線的斜率為3,求該曲線在A點(diǎn)處的切線方程。22.在拋物線SKIPIF1<0上求一點(diǎn)P,使過(guò)點(diǎn)P的切線和直線3x-y+1=0的夾角為SKIPIF1<0。23.判斷函數(shù)SKIPIF1<0在x=0處是否可導(dǎo)。24.求經(jīng)過(guò)點(diǎn)(2,0)且與曲線SKIPIF1<0相切的直線方程。25.求曲線y=xcosx在SKIPIF1<0處的切線方程。26.已知函數(shù)f(x)=x2+ax+b,g(x)=x2+cx+d.若f(2x+1)=4g(x),且f'x=g'(x),f(5)=30,求g(4).
27.已知曲線SKIPIF1<0與SKIPIF1<0。直線l與SKIPIF1<0、SKIPIF1<0都相切,求直線l的方程。28.設(shè)f(x)=(x-1)(x-2)…(x-100),求f′(1)。29.求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程。30.求證方程SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有且僅有一個(gè)實(shí)根31.SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0均為正數(shù)且SKIPIF1<0SKIPIF1<0SKIPIF1<0求證:SKIPIF1<032.(1)求函數(shù)SKIPIF1<0在x=1處的導(dǎo)數(shù);(2)求函數(shù)SKIPIF1<0(a、b為常數(shù))的導(dǎo)數(shù)。33.證明:如果函數(shù)y=f(x)在點(diǎn)SKIPIF1<0處可導(dǎo),那么函數(shù)y=f(x)在點(diǎn)SKIPIF1<0處連續(xù)。34.(2002年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(新課程卷文史類21))已知SKIPIF1<0函數(shù)SKIPIF1<0,設(shè)SKIPIF1<0,記曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線為SKIPIF1<0。(Ⅰ)求SKIPIF1<0的方程;(Ⅱ)設(shè)SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,證明:①SKIPIF1<0;②若SKIPIF1<0,則SKIPIF1<0。(Ⅳ)、參考答案1-5CBDCA;6-10BDBAB;11B12.SKIPIF1<013.y=2(x-1)或y=2(x+1)14.-615.3x+y+6=016.SKIPIF1<017.(-∞,-2)與(0,+∞)18.SKIPIF1<019.2x-y-1=020.(2,4)21.由導(dǎo)數(shù)定義求得SKIPIF1<0,令SKIPIF1<0,則x=±1。當(dāng)x=1時(shí),切點(diǎn)為(1,1),所以該曲線在(1,1)處的切線方程為y-1=3(x-1)即3x-y-2=0;當(dāng)x=-1時(shí),則切點(diǎn)坐標(biāo)為(-1,-1),所以該曲線在(-1,-1)處的切線方程為y+1=3(x+1)即3x-y+2=0。22.由導(dǎo)數(shù)定義得f′(x)=2x,設(shè)曲線上P點(diǎn)的坐標(biāo)為SKIPIF1<0,則該點(diǎn)處切線的斜率為SKIPIF1<0,根據(jù)夾角公式有SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0;則P(-1,1)或SKIPIF1<0。23.SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0不存在?!嗪瘮?shù)f(x)在x=0處不可導(dǎo)。24.可以驗(yàn)證點(diǎn)(2,0)不在曲線上,故設(shè)切點(diǎn)為SKIPIF1<0。由SKIPIF1<0SKIPIF1<0,得所求直線方程為SKIPIF1<0。由點(diǎn)(2,0)在直線上,得SKIPIF1<0,再由SKIPIF1<0在曲線上,得SKIPIF1<0,聯(lián)立可解得SKIPIF1<0,SKIPIF1<0。所求直線方程為x+y-2=0。25.Y’=x'cosx+x·(cosx)'=cosx-xsinxSKIPIF1<0,切點(diǎn)為SKIPIF1<0,∴切線方程為:SKIPIF1<0即SKIPIF1<0。26解:由已知(2x+1)2+a(2x+1)+b=4(x2+cx+d)
∴
=2x+a=2x+c∴a=c③
又知52+5a+b=30∴5a+b=5④
由①③知a=c=2.依次代入④、②知b=-5,
d=-g(4)=42+2×4-=2327.解:設(shè)l與SKIPIF1<0相切于點(diǎn)SKIPIF1<0,與SKIPIF1<0相切于SKIPIF1<0。對(duì)SKIPIF1<0,則與SKIPIF1<0相切于點(diǎn)P的切線方程為SKIPIF1<0,即SKIPIF1<0。①對(duì)SKIPIF1<0,則與
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國(guó)彈性墻面涂料行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)無(wú)塑餐盒封口紙行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 山東省日照市莒縣高三上學(xué)期期末考試(語(yǔ)文)試卷(含答案)
- 吊車租賃合同范本參考
- 2025加盟合同書(shū)樣式
- 貨車包月合同范本
- 范文環(huán)保驗(yàn)收合同范本
- 裝修管理服務(wù)合同范本
- 搭棚施工承包合同
- 2025技術(shù)許可合同
- 電網(wǎng)建設(shè)項(xiàng)目施工項(xiàng)目部環(huán)境保護(hù)和水土保持標(biāo)準(zhǔn)化管理手冊(cè)(變電工程分冊(cè))
- 口腔門診部設(shè)置可行性研究報(bào)告
- 五年級(jí)上冊(cè)口算練習(xí)1000題及答案
- 五年級(jí)數(shù)學(xué)(小數(shù)四則混合運(yùn)算)計(jì)算題及答案匯編
- 數(shù)學(xué)六年級(jí)上冊(cè)《弧長(zhǎng)》課件
- 體檢科運(yùn)營(yíng)可行性報(bào)告
- 北京市豐臺(tái)區(qū)市級(jí)名校2024屆數(shù)學(xué)高一第二學(xué)期期末檢測(cè)模擬試題含解析
- 設(shè)立項(xiàng)目管理公司組建方案
- 薪酬戰(zhàn)略與實(shí)踐
- 答案之書(shū)(解答之書(shū))-電子版精選答案
- 中國(guó)古代文學(xué)史 馬工程課件(上)01總緒論
評(píng)論
0/150
提交評(píng)論