版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省示范初中高一下數(shù)學期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,,則B等于()A.或 B. C. D.以上答案都不對2.已知函數(shù)在區(qū)間上是增函數(shù),且在區(qū)間上恰好取得一次最大值為2,則的取值范圍是()A. B. C. D.3.在正四棱柱中,,則點到平面的距離是()A. B. C. D.4.在數(shù)列{an}中,an=31﹣3n,設bn=anan+1an+2(n∈N*).Tn是數(shù)列{bn}的前n項和,當Tn取得最大值時n的值為()A.11 B.10 C.9 D.85.不等式所表示的平面區(qū)域是()A. B.C. D.6.定義運算:.若不等式的解集是空集,則實數(shù)的取值范圍是()A. B.C. D.7.下圖是某圓拱形橋一孔圓拱的示意圖,這個圓的圓拱跨度米,拱高米,建造時每隔8米需要用一根支柱支撐,則支柱的高度大約是()A.9.7米 B.9.1米 C.8.7米 D.8.1米8.函數(shù)的定義域為()A. B. C. D.9.若將函數(shù)的圖象向右平移個單位,所得圖象關于軸對稱,則的最小值是()A. B. C. D.10.下列命題中正確的是()A.相等的角終邊必相同 B.終邊相同的角必相等C.終邊落在第一象限的角必是銳角 D.不相等的角其終邊必不相同二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線分別與x軸、y軸交于A,B兩點,則等于________.12.已知向量,若,則________.13.在數(shù)列an中,a1=2,a14.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.15.已知角的終邊經(jīng)過點,則______.16.已知,若,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列滿足:,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和為.18.已知等差數(shù)列的前n項和為,且,.(1)求的通項公式;(2)若,且,,成等比數(shù)列,求k的值.19.在中,分別為內(nèi)角的對邊,且(1)求的大?。海?)若,求的面積.20.在中,內(nèi)角所對的邊分別為.已知,.(Ⅰ)求的值;(Ⅱ)求的值.21.某研究機構對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù).x681012y2356(1)請根據(jù)上表提供的數(shù)據(jù),求出y關于x的線性回歸方程;(2)判斷該高三學生的記憶力x和判斷力是正相關還是負相關;并預測判斷力為4的同學的記憶力.(參考公式:)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由正弦定理得,得,結合得,故選C.考點:正弦定理.2、D【解析】
化簡函數(shù)為正弦型函數(shù),根據(jù)題意,利用正弦函數(shù)的圖象與性質(zhì)求得的取值范圍.【詳解】解:函數(shù)則函數(shù)在上是含原點的遞增區(qū)間;又因為函數(shù)在區(qū)間上是單調(diào)遞增,則,得不等式組又因為,所以解得.又因為函數(shù)在區(qū)間上恰好取得一次最大值為2,可得,所以,綜上所述,可得.故選:D.【點睛】本題主要考查了正弦函數(shù)的圖像和性質(zhì)應用問題,也考查了三角函數(shù)的靈活應用,屬于中檔題.3、A【解析】
計算的面積,根據(jù)可得點到平面的距離.【詳解】中,,,∴的邊上的高為,∴,設到平面的距離為,則,又,∴,解得.故選A.【點睛】本題涉及點面距離的求法,點面距可以通過建立空間直角坐標系來求得點面距離,或者尋找面面垂直,再直接過點做交線的垂線即可;當點面距離不好求時,也可以根據(jù)等積法把點到平面的距離歸結為一個容易求得的幾何體的體積.4、B【解析】
由已知得到等差數(shù)列的公差,且數(shù)列的前11項大于1,自第11項起小于1,由,得出從到的值都大于零,時,時,,且,而當時,,由此可得答案.【詳解】由,得,等差數(shù)列的公差,由,得,則數(shù)列的前11項大于1,自第11項起小于1.由,可得從到的值都大于零,當時,時,,且,當時,,所以取得最大值時的值為11.故選:B.【點睛】本題主要考查了數(shù)列遞推式,以及數(shù)列的和的最值的判定,其中解答的關鍵是明確數(shù)列的項的特點,著重考查了分析問題和解答問題的能力,屬于中檔試題.5、D【解析】
根據(jù)二元一次不等式組表示平面區(qū)域進行判斷即可.【詳解】不等式組等價為或則對應的平面區(qū)域為D,
故選:D.【點睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎.6、B【解析】
根據(jù)定義可得的解集是空集,即恒成立,再對分類討論可得結果.【詳解】由題意得的解集是空集,即恒成立.當時,不等式即為,不等式恒成立;當時,若不等式恒成立,則即解得.綜上可知:.故選:B【點睛】本題考查了二次不等式的恒成立問題,考查了分類討論思想,屬于基礎題.7、A【解析】
以為原點、以為軸,以為軸建立平面直角坐標系,設出圓心坐標與半徑,可得圓拱所在圓的方程,將代入圓的方程,可求出支柱的高度【詳解】由圖以為原點、以為軸,以為軸建立平面直角坐標系,設圓心坐標為,,,則圓拱所在圓的方程為,,解得,,圓的方程為,將代入圓的方程,得.故選:A【點睛】本題考查了圓的標準方程在生活中的應用,需熟記圓的標準方程的形式,屬于基礎題.8、C【解析】要使函數(shù)有意義,需使,即,所以故選C9、B【解析】
把函數(shù)的解析式利用輔助角公式化成余弦型函數(shù)解析式形式,然后求出向右平移個單位后函數(shù)的解析式,根據(jù)題意,利用余弦型函數(shù)的性質(zhì)求解即可.【詳解】,該函數(shù)求出向右平移個單位后得到新函數(shù)的解析式為:,由題意可知:函數(shù)的圖象關于軸對稱,所以有當時,有最小值,最小值為.故選:B【點睛】本題考查了余弦型函數(shù)的圖象平移,考查了余弦型函數(shù)的性質(zhì),考查了數(shù)學運算能力.10、A【解析】
根據(jù)終邊相同的角的的概念可得正確的選項.【詳解】終邊相同的角滿足,故B、D錯誤,終邊落在第一象限的角可能是負角,故C錯誤,相等的角的終邊必定相同,故A正確.故選:A.【點睛】本題考查終邊相同的角,注意終邊相同時,有,本題屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】
分別求得A,B的坐標,再用兩點間的距離公式求解.【詳解】根據(jù)題意令得所以令得所以所以故答案為:5【點睛】本題主要考查點坐標的求法和兩點間的距離公式,還考查了運算求解的能力,屬于基礎題.12、【解析】
直接利用向量平行性質(zhì)得到答案.【詳解】,若故答案為【點睛】本題考查了向量平行的性質(zhì),屬于簡單題.13、2+【解析】
因為a1∴a∴=(=2+ln14、【解析】
根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因為,所以,即;取連續(xù)的有限項構成數(shù)列,不妨令,則,且,則此時必為整數(shù);當時,,不符合;當時,,符合,此時公比;當時,,不符合;當時,,不符合;故:公比.【點睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準確分析.15、【解析】由題意,則.16、【解析】
由條件利用正切函數(shù)的單調(diào)性直接求出的值.【詳解】解:函數(shù)在上單調(diào)遞增,且,若,則,故答案為:.【點睛】本題主要考查正切函數(shù)的單調(diào)性,根據(jù)三角函數(shù)的值求角,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由等差數(shù)列的性質(zhì),求得,進而得到,即可求得數(shù)列的通項公式;(2)由(1)可得,列用裂項法,即可求解數(shù)列的前項和.【詳解】(1)由等差數(shù)列的性質(zhì),可得,所以,又由,所以數(shù)列的通項公式.(2)由(1)可得,所以.【點睛】本題主要考查等差數(shù)列的通項公式及求和公式、以及“裂項法”求和的應用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,能較好的考查考生的邏輯思維能力及基本計算能力,屬于基礎題.18、(1);(2)4.【解析】
(1)設等差數(shù)列的公差為d,根據(jù)等差數(shù)列的通項公式,列出方程組,即可求解.(2)由(1),求得,再根據(jù),,成等比數(shù)列,得到關于的方程,即可求解.【詳解】(1)設等差數(shù)列的公差為d,由題意可得:,解得.所以數(shù)列的通項公式為.(2)由知,因為,,成等比數(shù)列,所以,即,解得.【點睛】本題主要考查了等差數(shù)列的通項公式,以及前n項和公式的應用,其中解答中熟記等差數(shù)列的通項公式和前n項和公式,列出方程準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1)(2)【解析】
(1)根據(jù)正弦定理將,角化為邊得,即,再由余弦定理求解(2)根據(jù),由正弦定理,求邊b,又,然后代入公式求解.【詳解】(1)因為,由正弦定理得:,即,,又,.(2)因為由正弦定理得,又,所以.【點睛】本題主要考查了正弦定理和余弦定理的應用,還考查了運算求解的能力,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意結合正弦定理得到的比例關系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用兩角和的正弦公式可得的值.【詳解】(Ⅰ)在中,由正弦定理得,又由,得,即.又因為,得到,.由余弦定理可得.(Ⅱ)由(Ⅰ)可得,從而,.故.【點睛】本題主要考查同角三角函數(shù)的基本關系,兩角和的正弦公式,二倍角的正弦與余弦公式,以及正弦定理?余弦定理等基礎知識.考查計算求解能力.21、(1)(2)該高三學生的記憶力x和判斷力是正相關;判斷力為4的同學的記憶力約為9【解析】
(1)根據(jù)所給數(shù)據(jù)和公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版木跳板生產(chǎn)設備采購合同示范文本4篇
- 二零二五年度鐘點工家庭保姆綜合服務合同
- 二零二五年度港口集裝箱運輸公司股權轉讓合同
- 2025年度酒店客房滿意度調(diào)查與改進合同
- 2025年度基層醫(yī)療網(wǎng)點合作經(jīng)營與管理協(xié)議
- 2025年度酒店設計合同合同解除與終止程序
- 二零二五年度上市公司財務審計與咨詢服務合同范本
- 2025年度駕校學員科目四夜間駕駛培訓合同
- 2025年度父母子女房產(chǎn)贈與及子女贍養(yǎng)義務協(xié)議書
- 2025年度智能安防系統(tǒng)研發(fā)股權轉讓協(xié)議解除及項目合作框架協(xié)議
- 2024年高考八省聯(lián)考地理適應性試卷附答案解析
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書范文
- 中國高血壓防治指南(2024年修訂版)要點解讀
- 2024-2030年中國光電干擾一體設備行業(yè)發(fā)展現(xiàn)狀與前景預測分析研究報告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學年七年級下學期期末數(shù)學試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書
- 杜仲葉藥理作用及臨床應用研究進展
- 4S店售后服務6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
評論
0/150
提交評論