湖北省隨州市二中學2024屆中考數(shù)學對點突破模擬試卷含解析_第1頁
湖北省隨州市二中學2024屆中考數(shù)學對點突破模擬試卷含解析_第2頁
湖北省隨州市二中學2024屆中考數(shù)學對點突破模擬試卷含解析_第3頁
湖北省隨州市二中學2024屆中考數(shù)學對點突破模擬試卷含解析_第4頁
湖北省隨州市二中學2024屆中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省隨州市二中學2024屆中考數(shù)學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當∠2=38°時,∠1=()A.52° B.38° C.42° D.60°2.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.83.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°4.下列計算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+15.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等6.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,7.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.8.計算(-ab2)3÷(-ab)2的結果是()A.a(chǎn)b4B.-ab4C.a(chǎn)b3D.-ab39.下列二次根式中,最簡二次根式的是()A. B. C. D.10.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.12.已知拋物線y=x2﹣x+3與y軸相交于點M,其頂點為N,平移該拋物線,使點M平移后的對應點M′與點N重合,則平移后的拋物線的解析式為_____.13.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當時,隨值的增大而增大;⑤當時,.其中,正確的說法有________(請寫出所有正確說法的序號).14.在平面直角坐標系中,點P到軸的距離為1,到軸的距離為2.寫出一個符合條件的點P的坐標________________.15.如圖,折疊長方形紙片ABCD,先折出對角線BD,再將AD折疊到BD上,得到折痕DE,點A的對應點是點F,若AB=8,BC=6,則AE的長為_____.16.如圖,在矩形ABCD中,AB=4,AD=2,以點A為圓心,AB長為半徑畫圓弧交邊DC于點E,則的長度為______.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.(1)求拋物線的函數(shù)表達式;(2)設直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側的一點,若,且與的面積相等,求點的坐標;(3)若在軸上有且只有一點,使,求的值.18.(8分)一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:(1)甲,乙兩組工作一天,商店各應付多少錢?(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)19.(8分)解不等式組,并將解集在數(shù)軸上表示出來.20.(8分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當△ABO是任意三角形時,設∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關系?②結論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.21.(8分)如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.22.(10分)計算:2sin30°﹣|1﹣|+()﹣123.(12分)如圖,AB是⊙O的直徑,點C是AB的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且OEEB求證:BD是⊙O的切線;(2)當OB=2時,求BH的長.24.甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關系.請根據(jù)圖象解答下列問題:當轎車剛到乙地時,此時貨車距離乙地千米;當轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質.2、B【解析】

根據(jù)垂徑定理求出AD,根據(jù)勾股定理列式求出半徑,根據(jù)三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵3、A【解析】

根據(jù)∠ABD=35°就可以求出的度數(shù),再根據(jù),可以求出,因此就可以求得的度數(shù),從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數(shù)都是70°,∵BD為直徑,∴的度數(shù)是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數(shù)也是110°,∴的度數(shù)是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質、圓周角定理,主要考查學生的推理能力.4、C【解析】

解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點睛】本題考查合并同類項,同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.5、B【解析】

①根據(jù)函數(shù)的圖象即可直接得出結論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結論.【詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應的函數(shù)解析式為y=60x,設CD段轎車對應的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【點睛】此題考查一次函數(shù)的應用,解題的關鍵在于利用題中信息列出函數(shù)解析式6、A【解析】

首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.7、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.8、B【解析】根據(jù)積的乘方的運算法則,先分別計算積的乘方,然后再根據(jù)單項式除法法則進行計算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.9、C【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.10、A【解析】試題分析:根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形二、填空題(本大題共6個小題,每小題3分,共18分)11、56【解析】

解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.12、y=(x﹣1)2+【解析】

直接利用拋物線與坐標軸交點求法結合頂點坐標求法分別得出M、N點坐標,進而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點坐標為:(,),令x=0,則y=3,∴M點的坐標是(0,3).∵平移該拋物線,使點M平移后的對應點M′與點N重合,∴拋物線向下平移個單位長度,再向右平移個單位長度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.【點睛】此題主要考查了拋物線與坐標軸交點求法以及二次函數(shù)的平移,正確得出平移方向和距離是解題關鍵.13、①②④【解析】

根據(jù)拋物線的對稱軸判斷①,根據(jù)拋物線與x軸的交點坐標判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點坐標為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當x>1時,y隨x值的增大而增大,④正確;當y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.14、(寫出一個即可)【解析】【分析】根據(jù)點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值,進行求解即可.【詳解】設P(x,y),根據(jù)題意,得|x|=2,|y|=1,即x=±2,y=±1,則點P的坐標有(2,1),(2,-1),(-2,1),(2,-1),故答案為:(2,1),(2,-1),(-2,1),(2,-1)(寫出一個即可).【點睛】本題考查了點的坐標和點到坐標軸的距離之間的關系.熟知點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值是解題的關鍵.15、3【解析】

先利用勾股定理求出BD,再求出DF、BF,設AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問題.【詳解】∵四邊形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.設AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案為:3.【點睛】本題考查了矩形的性質、勾股定理等知識,解題時,我們常常設要求的線段長為x,然后根據(jù)折疊和軸對稱的性質用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切?,運用勾股定理列出方程求出答案.16、【解析】試題解析:連接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的長度為:=.考點:弧長的計算.三、解答題(共8題,共72分)17、(1).;(2)點坐標為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點坐標即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點,且P為切點,P為MN的中點,運用三角形相似建立等量關系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時,直線與關于對稱.,,.,,.綜上所述,點坐標為;.(3)由題意可得:.,,,即.,,.設的中點為,點有且只有一個,以為直徑的圓與軸只有一個交點,且為切點.軸,為的中點,.,,,,即,.,.點睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關系列方程解決問題,會分類討論各種情況是解題的關鍵.18、(1)甲、乙兩組工作一天,商店各應付300元和140元;(2)單獨請乙組需要的費用少;(3)甲乙合作施工更有利于商店.【解析】

(1)設甲組單獨工作一天商店應付x元,乙組單獨工作一天商店應付y元,根據(jù)總費用與時間的關系建立方程組求出其解即可;

(2)由甲乙單獨完成需要的時間,再結合(1)求出甲、乙兩組單獨完成的費用進行比較就可以得出結論;

(3)先比較甲、乙單獨裝修的時間和費用誰對商店經(jīng)營有利,再比較合作裝修與甲單獨裝修對商店的有利經(jīng)營情況,從而可以得出結論.【詳解】解:(1)設:甲組工作一天商店應付x元,乙組工作一天商店付y元.由題意得:解得:答:甲、乙兩組工作一天,商店各應付300元和140元(2)單獨請甲組需要的費用:300×12=3600元.單獨請乙組需要的費用:24×140=3360元.答:單獨請乙組需要的費用少.(3)請兩組同時裝修,理由:甲單獨做,需費用3600元,少贏利200×12=2400元,相當于損失6000元;乙單獨做,需費用3360元,少贏利200X24=4800元,相當于損失8160元;甲乙合作,需費用3520元,少贏利200×8=1600元,相當于損失5120元;因為5120<6000<8160,所以甲乙合作損失費用最少,答:甲乙合作施工更有利于商店.【點睛】考查列二元一次方程組解實際問題的運用,工作總量=工作效率×工作時間的運用,設計推理方案的運用,解答時建立方程組求出甲乙單獨完成的工作時間是關鍵.19、原不等式組的解集為﹣4<x≤1,在數(shù)軸上表示見解析.【解析】分析:根據(jù)解一元一次不等式組的步驟,大小小大中間找,可得答案詳解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在數(shù)軸上表示如圖,原不等式組的解集為﹣4<x≤1.點睛:本題考查了解一元一次不等式組,利用不等式組的解集的表示方法是解題關鍵.20、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解析】

(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質、三角形內角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質、全等三角形的判定和性質證明.【詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延長OE至F,使EF=OE,連接FD、FC,則四邊形FDOC是平行四邊形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【點睛】本題是四邊形的綜合題,考查了線段垂直平分線的性質、全等三角形的判定和性質以及直角三角形斜邊上的中線性質、平行四邊形的判定與性質等知識;熟練掌握平行四邊形的判定與性質,證明三角形全等是解題的關鍵.21、(1)拋物線解析式為,頂點為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對稱軸解析式,可用頂點式二次函數(shù)通式來設拋物線,然后將A、B兩點坐標代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點的橫坐標,用拋物線的解析式求出E點的縱坐標,那么E點縱坐標的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關系式進而可得出S與x的函數(shù)關系式.(3)①將S=24代入S,x的函數(shù)關系式中求出x的值,即可得出E點的坐標和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應該是等腰直角三角形,即E點的坐標為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點.【詳解】(1)由拋物線的對稱軸是,可設解析式為.把A、B兩點坐標代入上式,得解之,得故拋物線解析式為,頂點為(2)∵點在拋物線上,位于第四象限,且坐標適合,∴y<0,即-y>0,-y表示點E到OA的距離.∵OA是的對角線,∴.因為拋物線與軸的兩個交點是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當S=24時,即.化簡,得解之,得故所求的點E有兩個,分別為E1(3,-4),E2(4,-4).點E1(3,-4)滿足OE=AE,所以是菱形;點E2(4,-4)不滿足OE=AE,所以不是菱形.②當OA⊥EF,且OA=EF時,是正方形,此時點E的坐標只能是(3,-3).而坐標為(3,-3)的點不在拋物線上,故不存在這樣的點E,使為正方形.22、4﹣【解析】

原式利用絕對值的代數(shù)意義,特殊角的三角函數(shù)值,負整數(shù)指數(shù)冪的法則計算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【點睛】本題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.23、(1)證明見解析;(2)BH=125【解析】

(1)先判斷出∠AOC=90°,再判斷出OC∥BD,即可得出結論;(2)先利用相似三角形求出BF,進而利用勾股定理求出AF,最后利用面積即可得出結論.【詳解】(1)連接OC,∵AB是⊙O的直徑,點C是AB的中點,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位線,∴OC∥BD,∴∠ABD=∠AOC=90°,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論