版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
寧夏青銅峽一中2025屆高一數(shù)學第二學期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設等差數(shù)列{an}的前n項和為Sn.若a1+a3=6,S4=16,則a4=()A.6 B.7 C.8 D.92.如圖,直角的斜邊長為2,,且點分別在軸,軸正半軸上滑動,點在線段的右上方.設,(),記,,分別考察的所有運算結(jié)果,則()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值3.△中,已知,,,如果△有兩組解,則的取值范圍()A. B. C. D.4.若集合,,則(
)A. B. C. D.5.函數(shù)的最大值為()A. B. C. D.6.一位媽媽記錄了孩子6至9歲的身高(單位:cm),所得數(shù)據(jù)如下表:年齡(歲)6789身高(cm)118126136144由散點圖可知,身高與年齡之間的線性回歸方程為,預測該孩子10歲時的身高為A.154 B.153 C.152 D.1517.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.28.已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是,接下來的兩項是,再接下來的三項是,依此類推,記此數(shù)列為,則()A.1 B.2 C.4 D.89.某中學舉行高一廣播體操比賽,共10個隊參賽,為了確定出場順序,學校制作了10個出場序號簽供大家抽簽,高一(l)班先抽,則他們抽到的出場序號小于4的概率為()A. B. C. D.10.已知點是所在平面內(nèi)的一定點,是平面內(nèi)一動點,若,則點的軌跡一定經(jīng)過的()A.重心 B.垂心 C.內(nèi)心 D.外心二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角的對邊分別為,若,則_______.(僅用邊表示)12.已知內(nèi)接于拋物線,其中O為原點,若此內(nèi)接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.13.設,且,則的取值范圍是______.14.一水平位置的平面圖形的斜二測直觀圖是一個底平行于軸,底角為,兩腰和上底長均為1的等腰梯形,則這個平面圖形的面積是.15.若,則=.16.已知向量、滿足:,,,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某校200名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是.(1)求圖中m的值;(2)根據(jù)頻率分布直方圖,估計這200名學生的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表)和中位數(shù)(四舍五入取整數(shù));(3)若這200名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)x與英語成績相應分數(shù)段的人數(shù)y之比如下表所示,求英語成績在的人數(shù).分數(shù)段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:118.已知為銳角三角形,內(nèi)角A,B,C的對邊分別為a,b,c,若.(1)求C;(2)若,且的面積為,求的周長.19.在中,內(nèi)角,,所對的邊分別為,,且.(1)求角的大??;(2)若,,求的面積.20.如圖是一景區(qū)的截面圖,是可以行走的斜坡,已知百米,是沒有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假設你(看做一點)在斜坡上,身上只攜帶著量角器(可以測量以你為頂點的角).(1)請你設計一個通過測量角可以計算出斜坡的長的方案,用字母表示所測量的角,計算出的長,并化簡;(2)設百米,百米,,,求山崖的長.(精確到米)21.如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊(、、按順時針方向排列)(1)若等邊邊長為,,試寫出關(guān)于的函數(shù)關(guān)系;(2)問為多少時,四邊形的面積最大?這個最大面積為多少?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用等差數(shù)列的性質(zhì)對已知條件進行化簡,由此求得的值.【詳解】依題意,解得.故選:B【點睛】本小題主要考查等差中項的性質(zhì),屬于基礎題.2、B【解析】
設,用表示出,根據(jù)的取值范圍,利用三角函數(shù)恒等變換化簡,進而求得最值的情況.【詳解】依題意,所以.設,則,所以,,所以,當時,取得最大值為.,所以,所以,當時,有最小值為.故選B.【點睛】本小題主要考查平面向量數(shù)量積的坐標運算,考查三角函數(shù)化簡求值,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.3、D【解析】由正弦定理得A+C=180°-60°=120°,
由題意得:A有兩個值,且這兩個值之和為180°,
∴利用正弦函數(shù)的圖象可得:60°<A<120°,
若A=90,這樣補角也是90°,一解,不合題意,<sinA<1,
∵x=sinA,則2<x<故選D4、B【解析】
通過集合B中,用列舉法表示出集合B,再利用交集的定義求出.【詳解】由題意,集合,所以故答案為:B【點睛】本題主要考查了集合的表示方法,以及集合的運算,其中熟記集合的表示方法,以及準確利用集合的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.5、D【解析】
函數(shù)可以化為,設,由,則,即轉(zhuǎn)化為求二次函數(shù)在上的最大值.【詳解】由設,由,則.即求二次函數(shù)在上的最大值所以當,即時,函數(shù)取得最大值.故選:D【點睛】本題考查的二次型函數(shù)的最值,屬于中檔題.6、B【解析】試題分析:根據(jù)題意,由表格可知,身高y與年齡x之間的線性回歸直線方程為,那么可知回歸方程必定過樣本中心點,即為(7,131)代入可知,=65,預測該學生10歲時的身高,將x=10代入方程中,即可知為153,故可知答案為B考點:線性回歸直線方程點評:主要是考查了線性回歸直線方程的回歸系數(shù)的運用,屬于基礎題.7、B【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.8、C【解析】
將數(shù)列分組:第1組為,第2組為,第3組為,,根據(jù),進而得到數(shù)列的2017項為,數(shù)列的第2018項為,數(shù)列的第2019項為,即可求解.【詳解】將所給的數(shù)列分組:第1組為,第2組為,第3組為,,則數(shù)列的前n組共有項,又由,所以數(shù)列的前63組共有2016項,所以數(shù)列的2017項為,數(shù)列的第2018項為,數(shù)列的第2019項為,所以故選:C.【點睛】本題主要考查了等差數(shù)列的前n項和公式的應用,其中解答中根據(jù)所給數(shù)列合理分組,結(jié)合等差數(shù)列的前n項和求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.9、D【解析】
古典概率公式得到答案.【詳解】抽到的出場序號小于4的概率:故答案選D【點睛】本題考查了概率的計算,屬于簡單題.10、A【解析】
設D是BC的中點,由,,知,所以點P的軌跡是射線AD,故點P的軌跡一定經(jīng)過△ABC的重心.【詳解】如圖,設D是BC的中點,∵,,∴,即∴點P的軌跡是射線AD,∵AD是△ABC中BC邊上的中線,∴點P的軌跡一定經(jīng)過△ABC的重心.故選:A.【點睛】本題考查三角形五心的應用,是基礎題.解題時要認真審題,仔細解答.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用正弦定理和三角函數(shù)關(guān)系式的變換的應用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應用,主要考察學生的運算能力和轉(zhuǎn)換能力,屬于基礎題型.12、【解析】
由拋物線的對稱性知A、B關(guān)于x軸對稱,設出它們的坐標,利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標,問題得以解決.【詳解】∵拋物線關(guān)于x軸對稱,內(nèi)接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關(guān)于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質(zhì),考查了兩直線垂直與斜率的關(guān)系,是中檔題13、【解析】
通過可求得x的取值范圍,接著利用反正弦函數(shù)的定義可得的取值范圍.【詳解】,,即.由反正弦函數(shù)的定義可得,即的取值范圍為.故答案為:.【點睛】本題主要考查余弦函數(shù)的定義域和值域,反正弦函數(shù)的定義,屬于基礎題.14、【解析】如圖過點作,,則四邊形是一個內(nèi)角為45°的平行四邊形且,中,,則對應可得四邊形是矩形且,是直角三角形,.所以15、【解析】.16、.【解析】
將等式兩邊平方得出的值,再利用結(jié)合平面向量的數(shù)量積運算律可得出結(jié)果.【詳解】,,,因此,,故答案為.【點睛】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)平均分為,中位數(shù)為(3)140人【解析】
(1)由題得,解方程即得解;(2)利用頻率分布直方圖中平均數(shù)和中位數(shù)的計算公式估計這200名學生的平均分和中位數(shù);(3)分別計算每一段的人數(shù)即得解.【詳解】(1)由,解得.(2)頻率分布直方圖中每一個小矩形的面積乘以底邊中點的橫坐標之和即為平均數(shù),即估計平均數(shù)為.設中位數(shù)為,則解得(3)由頻率分布直方圖可求出這200名學生的數(shù)學成績在,,的分別有60人,40人,10人,按照表中給的比例,則英語成績在,,的分別有50人,80人,10人,所以英語成績在的有140人.【點睛】本題主要考查頻率分布直方圖的性質(zhì),考查頻率分布直方圖中平均數(shù)和中位數(shù)的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.18、(1);(2).【解析】
(1)根據(jù)正弦定理可求,利用特殊角三角函數(shù)可求C;(2)由和的面積公式,可求,再根據(jù)余弦定理求得解出a,b即可求的周長.【詳解】(1)因為,所以由正弦定理得,又所以,又為銳角三角形,所以.(2)因為,所以由面積公式得,.又因為,所以由余弦定理得,,所以,或,,故的周長為.【點睛】本題考查正弦定理、余弦定理的應用,三角形面積公式在解三角形中的應用,屬于基礎題.19、(1)(2)【解析】
(1)由正弦定理以及兩角差的余弦公式得到,由特殊角的三角函數(shù)值得到結(jié)果;(2)結(jié)合余弦定理和面積公式得到結(jié)果.【詳解】(1)由正弦定理得,∵,∴,即,∴又∵,∴.(2)∵∴.∴,∴.【點睛】本題主要考查正弦定理及余弦定理的應用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.20、(1)米,詳見解析(2)205米【解析】
(1)由題意測得,,在中利用正弦定理求得的值;(2)解法一,中由余弦定理求得,中求得和的值,在中利用余弦定理求得的值.解法二,中求得,中利用余弦定理求得,利用三角恒等變換求得,在中利用余弦定理求得的值.【詳解】解:(1)據(jù)題意,可測得,,在中,由正弦定理,有,即.解得(米).(2)解一:在中,百米,百米,百米,由余弦定理,可得,解得,∴.又由已知,在中,,可解得,從而的.∵,在中,由余弦定理得米所以,的長度約為205米.解二:(2)在中,求得.在中,由余弦定理,得,進而得,再由可求得,.在中,由余弦定理,得.所以,的長度約為205米.【點睛】本題考查了三角恒等變換與解三角形的應用問題,也考查了三角函數(shù)模型應用問題,是中檔題.21、(1);(2)θ=時,四邊形OACB的面積最大
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度甲乙雙方生物科技研究與產(chǎn)業(yè)化合作協(xié)議
- 2025年度門窗行業(yè)人才培訓與技術(shù)交流合同
- 二零二五年度體育場館車位租賃及賽事服務協(xié)議錦集
- 2025年度離婚協(xié)議書無子女無共同財產(chǎn)財產(chǎn)分割調(diào)解合同
- 二零二五年度餐廳品牌知名度與美譽度轉(zhuǎn)讓合同
- 二零二五年度外賣配送與外賣員權(quán)益保障協(xié)議
- 2025年度門窗行業(yè)市場調(diào)研與推廣合同
- 2025年度解除勞動合同關(guān)系及離職員工離職手續(xù)辦理協(xié)議
- 2025年度智能電子加油卡用戶優(yōu)惠套餐合同
- 2025年度甲乙雙方智慧社區(qū)建設合作合同簽訂模板
- 2025寒假散學典禮(休業(yè)式)上校長精彩講話:以董宇輝的創(chuàng)新、羅振宇的堅持、馬龍的熱愛啟迪未來
- 2025年浙江中外運有限公司招聘筆試參考題庫含答案解析
- 《皮膚病中成藥導引》課件
- 建筑公司2025年度工作總結(jié)和2025年工作安排計劃
- 2023-2024學年廣東省廣州市越秀區(qū)九年級(上)期末物理試卷(含答案)
- 太空軍事法律問題-洞察分析
- 2024年行政執(zhí)法人員資格考試必考知識題庫及答案(共250題)
- 電壓損失計算表
- 福建省福州市2023-2024學年高二上學期期末測試英語試卷(含答案)
- 二零二四年風力發(fā)電項目EPC總承包合同
- 汽車維修開發(fā)票協(xié)議書
評論
0/150
提交評論