版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省含山縣中考三模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)國家統(tǒng)計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數(shù)據(jù)827122億元用科學(xué)記數(shù)法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10142.如圖,PB切⊙O于點(diǎn)B,PO交⊙O于點(diǎn)E,延長PO交⊙O于點(diǎn)A,連結(jié)AB,⊙O的半徑OD⊥AB于點(diǎn)C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.23.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點(diǎn),且0<x1<1,1<x2<2與y軸交于(0,-2),下列結(jié)論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個4.下列現(xiàn)象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風(fēng)玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉(zhuǎn)一扇門,門在空中運(yùn)動的痕跡5.如圖,是在直角坐標(biāo)系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標(biāo)是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)6.下列圖標(biāo)中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長為半徑畫一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.8.點(diǎn)P(﹣2,5)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)9.如圖,點(diǎn)A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點(diǎn)A表示的數(shù)是A. B. C. D.310.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點(diǎn),那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:a3÷(﹣a)2=_____.12.已知點(diǎn)A(2,4)與點(diǎn)B(b﹣1,2a)關(guān)于原點(diǎn)對稱,則ab=_____.13.如圖,為了解全校300名男生的身高情況,隨機(jī)抽取若干男生進(jìn)行身高測量,將所得數(shù)據(jù)(精確到1cm)整理畫出頻數(shù)分布直方圖(每組數(shù)據(jù)含最低值,不含最高值),估計該校男生的身高在170cm﹣175cm之間的人數(shù)約有_____人.14.二次函數(shù)的圖象與x軸有____個交點(diǎn)
.15.已知ba=216.如圖(1),在矩形ABCD中,將矩形折疊,使點(diǎn)B落在邊AD上,這時折痕與邊AD和BC分別交于點(diǎn)E、點(diǎn)F.然后再展開鋪平,以B、E、F為頂點(diǎn)的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點(diǎn)E的坐標(biāo)為_________________________.三、解答題(共8題,共72分)17.(8分)計算:﹣|﹣2|+()﹣1﹣2cos45°18.(8分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長.19.(8分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.20.(8分)如圖,△ABC內(nèi)接于⊙O,過點(diǎn)C作BC的垂線交⊙O于D,點(diǎn)E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當(dāng)AB=8,CE=2時,求⊙O直徑的長.21.(8分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現(xiàn)公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機(jī)選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.22.(10分)隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.“健身達(dá)人”小陳為了了解他的好友的運(yùn)動情況.隨機(jī)抽取了部分好友進(jìn)行調(diào)查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:請依據(jù)統(tǒng)計結(jié)果回答下列問題:本次調(diào)查中,一共調(diào)查了位好友.已知A類好友人數(shù)是D類好友人數(shù)的5倍.①請補(bǔ)全條形圖;②扇形圖中,“A”對應(yīng)扇形的圓心角為度.③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友6月1日這天行走的步數(shù)超過10000步?23.(12分)某地區(qū)教育部門為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目”四個項(xiàng)目進(jìn)行評價.檢測小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是
;在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應(yīng)的圓心角為
度;將條形統(tǒng)計圖補(bǔ)充完整;如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨(dú)立思考”的學(xué)生約有多少人?24.如圖,在Rt△ABC中,,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當(dāng)D在AB中點(diǎn)時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點(diǎn),則當(dāng)=______時,四邊形BECD是正方形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由科學(xué)記數(shù)法的定義可得答案.【詳解】解:827122億即82712200000000,用科學(xué)記數(shù)法表示為8.27122×1013,故選B.【點(diǎn)睛】科學(xué)記數(shù)法表示數(shù)的標(biāo)準(zhǔn)形式為(<10且n為整數(shù)).2、C【解析】
連接OB,根據(jù)切線的性質(zhì)與三角函數(shù)得到∠POB=60°,OB=OD=2,再根據(jù)等腰三角形的性質(zhì)與三角函數(shù)得到OC的長,即可得到CD的長.【詳解】解:如圖,連接OB,∵PB切⊙O于點(diǎn)B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點(diǎn)睛】本題主要考查切線的性質(zhì)與銳角的三角函數(shù),解此題的關(guān)鍵在于利用切線的性質(zhì)得到相關(guān)線段與角度的值,再根據(jù)圓和等腰三角形的性質(zhì)求解即可.3、A【解析】
如圖,且圖像與y軸交于點(diǎn),可知該拋物線的開口向下,即,①當(dāng)時,故①錯誤.②由圖像可知,當(dāng)時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【點(diǎn)睛】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標(biāo)軸的交點(diǎn)確定.4、B【解析】
本題是一道關(guān)于點(diǎn)、線、面、體的題目,回憶點(diǎn)、線、面、體的知識;【詳解】解:∵A、天空劃過一道流星說明“點(diǎn)動成線”,∴故本選項(xiàng)錯誤.∵B、汽車雨刷在擋風(fēng)玻璃上刷出的痕跡說明“線動成面”,∴故本選項(xiàng)正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點(diǎn)動成線”,∴故本選項(xiàng)錯誤.∵D、旋轉(zhuǎn)一扇門,門在空中運(yùn)動的痕跡說明“面動成體”,∴故本選項(xiàng)錯誤.故選B.【點(diǎn)睛】本題考查了點(diǎn)、線、面、體,準(zhǔn)確認(rèn)識生活實(shí)際中的現(xiàn)象是解題的關(guān)鍵.點(diǎn)動成線、線動成面、面動成體.5、A【解析】
首先根據(jù)各選項(xiàng)棋子的位置,進(jìn)而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當(dāng)擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)正確;B、當(dāng)擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)錯誤;C、當(dāng)擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項(xiàng)錯誤;D、當(dāng)擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項(xiàng)錯誤.故選:A.【點(diǎn)睛】此題主要考查了坐標(biāo)確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點(diǎn)位置是解題關(guān)鍵.6、D【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念,可知:A既不是軸對稱圖形,也不是中心對稱圖形,故不正確;B不是軸對稱圖形,但是中心對稱圖形,故不正確;C是軸對稱圖形,但不是中心對稱圖形,故不正確;D即是軸對稱圖形,也是中心對稱圖形,故正確.故選D.考點(diǎn):軸對稱圖形和中心對稱圖形識別7、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是記住扇形的面積公式:S=.8、D【解析】
根據(jù)關(guān)于y軸對稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得答案.【詳解】點(diǎn)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為,故選:D.【點(diǎn)睛】本題主要考查了平面直角坐標(biāo)系中點(diǎn)的對稱,熟練掌握點(diǎn)的對稱特點(diǎn)是解決本題的關(guān)鍵.9、B【解析】
如果點(diǎn)A,B表示的數(shù)的絕對值相等,那么AB的中點(diǎn)即為坐標(biāo)原點(diǎn).【詳解】解:如圖,AB的中點(diǎn)即數(shù)軸的原點(diǎn)O.
根據(jù)數(shù)軸可以得到點(diǎn)A表示的數(shù)是.
故選:B.【點(diǎn)睛】此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點(diǎn)確定數(shù)軸的原點(diǎn)是解決本題的關(guān)鍵.10、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當(dāng)d>4+7或d<7-4時,這兩個圓沒有公共點(diǎn),即d>11或d<3,∴上述四個數(shù)中,只有D選項(xiàng)中的1符合要求.故選D.點(diǎn)睛:兩圓沒有公共點(diǎn),存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內(nèi)含,此時圓心距<大圓半徑-小圓半徑.二、填空題(本大題共6個小題,每小題3分,共18分)11、a【解析】
利用整式的除法運(yùn)算即可得出答案.【詳解】原式=a=a.【點(diǎn)睛】本題考查的知識點(diǎn)是整式的除法,解題關(guān)鍵是先將-a2變成a12、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.13、1【解析】
用總?cè)藬?shù)300乘以樣本中身高在170cm-175cm之間的人數(shù)占被調(diào)查人數(shù)的比例.【詳解】估計該校男生的身高在170cm-175cm之間的人數(shù)約為300×=1(人),故答案為1.【點(diǎn)睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.14、2【解析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號進(jìn)行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點(diǎn)的個數(shù).【詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點(diǎn)的縱坐標(biāo)是零,即當(dāng)y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實(shí)數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個交點(diǎn),故答案為:2.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn).二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點(diǎn)與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點(diǎn)個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點(diǎn);△=b2-4ac=0時,拋物線與x軸有1個交點(diǎn);△=b2-4ac<0時,拋物線與x軸沒有交點(diǎn).15、3【解析】
依據(jù)ba=23可設(shè)a=3k,b=2【詳解】∵ba∴可設(shè)a=3k,b=2k,∴aa-b故答案為3.【點(diǎn)睛】本題主要考查了比例的性質(zhì)及見比設(shè)參的數(shù)學(xué)思想,組成比例的四個數(shù),叫做比例的項(xiàng).兩端的兩項(xiàng)叫做比例的外項(xiàng),中間的兩項(xiàng)叫做比例的內(nèi)項(xiàng).16、(,2).【解析】
解:如圖,當(dāng)點(diǎn)B與點(diǎn)D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點(diǎn)E坐標(biāo)(,2).故答案為:(,2).【點(diǎn)睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.三、解答題(共8題,共72分)17、+1【解析】分析:直接利用二次根式的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=2﹣2+3﹣2×=2+1﹣=+1.點(diǎn)睛:本題主要考查了實(shí)數(shù)運(yùn)算,正確化簡各數(shù)是解題的關(guān)鍵.18、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點(diǎn)G作GN⊥QB交QB的延長線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點(diǎn)G作GN⊥QB交QB的延長線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點(diǎn)睛:解本題第3小題的要點(diǎn)是:(1)作出如圖所示的輔助線,結(jié)合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點(diǎn)G作GN⊥QB并交QB的延長線于點(diǎn)N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.19、(1)(2)【解析】
(1)根據(jù)負(fù)整數(shù)指數(shù)冪、二次根式、零指數(shù)冪和特殊角的三角函數(shù)值可以解答本題;(2)根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.【詳解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,當(dāng)x=﹣1時,原式==.【點(diǎn)睛】本題考查分式的化簡求值、絕對值、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪和特殊角的三角函數(shù)值,解答本題的關(guān)鍵是明確它們各自的計算方法.20、(1)見解析;(2)⊙O直徑的長是4.【解析】
(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結(jié)論;
(2)先判斷出AC⊥BD,進(jìn)而求出BC=AB=8,進(jìn)而判斷出△BDC∽△BED,求出BD,即可得出結(jié)論.【詳解】證明:(1)連接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直徑,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切線;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直徑,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴=,∴BD2=BC?BE=8×10=80,∴BD=4.即⊙O直徑的長是4.【點(diǎn)睛】此題主要考查圓周角定理,垂徑定理,相似三角形的判定和性質(zhì),切線的判定和性質(zhì),第二問中求出BC=8是解本題的關(guān)鍵.21、(1);(2)【解析】
(1)根據(jù)概率公式計算可得;(2)畫樹狀圖列出所有等可能結(jié)果,從中找到符合要求的結(jié)果數(shù),利用概率公式計算可得.【詳解】解:(1)由于共有A、B、W三個座位,∴甲選擇座位W的概率為,故答案為:;(2)畫樹狀圖如下:由圖可知,共有6種等可能結(jié)果,其中甲、乙選擇相鄰的座位有兩種,所以P(甲乙相鄰)==.【點(diǎn)睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結(jié)果,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)30;(2)①補(bǔ)圖見解析;②120;③70人.【解析】分析:(1)由B類別人數(shù)及其所占百分比可得總?cè)藬?shù);(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)總?cè)藬?shù)列方程求得a的值,從而補(bǔ)全圖形;②用360°乘以A類別人數(shù)所占比例可得;③總?cè)藬?shù)乘以樣本中C、D類別人數(shù)和所占比例.詳解:(1)本次調(diào)查的好友人數(shù)為6÷20%=30人,故答案為:30;(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)題意,得:a+6+12+5a=30,解得:a=2,即A類人數(shù)為10、D類人數(shù)為2,補(bǔ)全圖形如下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024城市二手房買賣合同(32篇)
- 滬教版九年級化學(xué)上冊(上海版)全套講義
- 農(nóng)業(yè)金融服務(wù)提升產(chǎn)量潛力
- 高一化學(xué)教案:專題第三單元第二課時有機(jī)高分子的合成
- 2024高中化學(xué)第二章烴和鹵代烴2-1苯的結(jié)構(gòu)與性質(zhì)課時作業(yè)含解析新人教版選修5
- 2024高中地理第四章自然環(huán)境對人類活動的影響4自然災(zāi)害對人類的危害課時作業(yè)含解析湘教版必修1
- 2024高中生物第五章生態(tài)系統(tǒng)及其穩(wěn)定性第5節(jié)生態(tài)系統(tǒng)的穩(wěn)定性精練含解析新人教版必修3
- 2024高中語文第二課千言萬語總關(guān)“音”第2節(jié)耳聽為虛-同音字和同音詞練習(xí)含解析新人教版選修語言文字應(yīng)用
- 2024高中語文精讀課文一第1課1長安十年作業(yè)含解析新人教版選修中外傳記蚜
- 2024高考?xì)v史一輪復(fù)習(xí)方案專題六古代中國經(jīng)濟(jì)的基本結(jié)構(gòu)與特點(diǎn)專題綜合測驗(yàn)含解析人民版
- 部編版語文三年級下冊第二單元整體作業(yè)設(shè)計
- 物聯(lián)網(wǎng)安全風(fēng)險評估剖析-洞察分析
- 治未病科室建設(shè)
- 2024天津高考英語試題及答案
- 2014-2024年高考語文真題匯編之詩歌鑒賞含答案解析
- 項(xiàng)目微信公眾號運(yùn)營方案
- 2024-2025學(xué)年上學(xué)期合肥初中英語九年級期末試卷
- 醫(yī)療質(zhì)量提高
- 中考數(shù)學(xué)試卷(a卷)
- 全國國家版圖知識競賽題庫及答案(中小學(xué)組)
- 石材基礎(chǔ)知識及加工工藝考核試卷
評論
0/150
提交評論