版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省宜昌市2025屆高一下數(shù)學期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還”.其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,則該人第五天走的路程為()A.48里 B.24里 C.12里 D.6里2.已知等比數(shù)列的前n項和為,若,,,則()A. B. C. D.3.若,則的坐標是()A. B. C. D.4.已知,則的值為A. B. C. D.5.甲、乙兩名選手參加歌手大賽時,5名評委打的分數(shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分數(shù)的標準差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定6.若,且,則xy的最大值為()A. B. C. D.7.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為()A.13+5 B.11+5 C.8.某小組有3名男生和2名女生,從中任選2名學生參加演講比賽,那么互斥而不對立的兩個事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生9.已知函數(shù)在上是x的減函數(shù),則a的取值范圍是()A. B. C. D.10.已知角的終邊經(jīng)過點,則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知公式,,借助這個公式,我們可以求函數(shù)的值域,則該函數(shù)的值域是______.12.若等比數(shù)列的各項均為正數(shù),且,則等于__________.13.正方體中,異面直線和所成角的余弦值是________.14.在數(shù)列中,,則___________.15.已知直線與相互垂直,且垂足為,則的值為______.16.已知,且,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求實數(shù)的取值范圍.18.已知直角梯形中,,,,,,過作,垂足為,分別為的中點,現(xiàn)將沿折疊,使得.(1)求證:(2)在線段上找一點,使得,并說明理由.19.如圖,是正方形,是該正方形的中心,是平面外一點,底面,是的中點.求證:(1)平面;(2)平面平面.20.在銳角三角形中,分別是角的對邊,且.(1)求角的大??;(2)若,求的取值范圍.21.在等差數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)等比數(shù)列前項和公式列方程,求得首項的值,進而求得的值.【詳解】設(shè)第一天走,公比,所以,解得,所以.故選C.【點睛】本小題主要考查等比數(shù)列前項和的基本量計算,考查等比數(shù)列的通項公式,考查中國古典數(shù)學文化,屬于基礎(chǔ)題.2、D【解析】
根據(jù)等比數(shù)列前n項和的性質(zhì)可知、、成等比數(shù)列,即可得關(guān)于的等式,化簡即可得解.【詳解】等比數(shù)列的前n項和為,若,,根據(jù)等比數(shù)列前n項和性質(zhì)可知,、、滿足:化簡可得故選:D【點睛】本題考查了等比數(shù)列前n項和的性質(zhì)及簡單應(yīng)用,屬于基礎(chǔ)題.3、C【解析】
,.故選C.4、B【解析】
利用誘導公式求得tanα,再利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.【詳解】∵已知tanα,∴tanα,則,故選B.【點睛】本題主要考查應(yīng)用誘導公式、同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.5、C【解析】
先求均值,再根據(jù)標準差公式求標準差,最后比較大小.【詳解】乙選手分數(shù)的平均數(shù)分別為所以標準差分別為因此s1<s2,選C.【點睛】本題考查標準差,考查基本求解能力.6、D【解析】
利用基本不等式可直接求得結(jié)果.【詳解】(當且僅當時取等號)的最大值為故選:【點睛】本題考查利用基本不等式求解積的最大值的問題,屬于基礎(chǔ)題.7、B【解析】
三視圖可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成.【詳解】幾何體可看成由一個長1寬2高1的長方體和以2和1為直角邊的三角形為底面高為1的三棱柱組合而成S=【點睛】已知三視圖,求原幾何體的表面積或體積是高考必考內(nèi)容,主要考查空間想象能力,需要熟練掌握常見的幾何體的三視圖,會識別出簡單的組合體.8、D【解析】試題分析:A中兩事件不是互斥事件;B中不是互斥事件;C中兩事件既是互斥事件又是對立事件;D中兩事件是互斥但不對立事件考點:互斥事件與對立事件9、C【解析】
由復合函數(shù)單調(diào)性及函數(shù)的定義域得不等關(guān)系.【詳解】由題意,解得.故選:C.【點睛】本題考查對數(shù)型復合函數(shù)的單調(diào)性,解題時要注意對數(shù)函數(shù)的定義域.10、D【解析】試題分析:由題意可知x=-4,y=3,r=5,所以.故選D.考點:三角函數(shù)的概念.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意,可令,結(jié)合,再進行整體代換即可求解【詳解】令,則,,,則,,,則函數(shù)值域為故答案為:【點睛】本題考查3倍角公式的使用,函數(shù)的轉(zhuǎn)化思想,屬于中檔題12、50【解析】由題意可得,=,填50.13、【解析】
由,可得異面直線和所成的角,利用直角三角形的性質(zhì)可得結(jié)果.【詳解】因為,所以異面直線和所成角,設(shè)正方體的棱長為,則直角三角形中,,,故答案為.【點睛】本題主要考查異面直線所成的角,屬于中檔題題.求異面直線所成的角的角,先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質(zhì)及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結(jié)果一定要取絕對值.14、-1【解析】
首先根據(jù),得到是以,的等差數(shù)列.再計算其前項和即可求出,的值.【詳解】因為,.所以數(shù)列是以,的等差數(shù)列.所以.所以,,.故答案為:【點睛】本題主要考查等差數(shù)列的判斷和等差數(shù)列的前項和的計算,屬于簡單題.15、【解析】
先由兩直線垂直,可求出的值,將垂足點代入直線的方程可求出的點,再將垂足點代入直線的方程可求出的值,由此可計算出的值.【詳解】,,解得,直線的方程為,即,由于點在直線上,,解得,將點的坐標代入直線的方程得,解得,因此,.故答案為:.【點睛】本題考查了由兩直線垂直求參數(shù),以及由兩直線的公共點求參數(shù),考查推理能力與計算能力,屬于基礎(chǔ)題.16、【解析】
首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①9,②【解析】
(1)根據(jù)不等式的端點值是對應(yīng)方程的實數(shù)根,利用根與系數(shù)的關(guān)系,得到的值;(2)①根據(jù)求的最值,可利用求最值;②利用二次函數(shù)恒成立問題求解.【詳解】由已知可知,的兩根是所以,解得.(2)①,當時等號成立,因為,解得時等號成立,此時的最小值是9.②在上恒成立,,又因為代入上式可得解得:.【點睛】本題考查了二次函數(shù)與一元二次方程和一元二次不等式的問題,和基本不等式求最值,屬于基礎(chǔ)題型.18、(1)見解析(2)【解析】試題分析:(Ⅰ)由已知得:面面;(II)分析可知,點滿足時,面BDR⊥面BDC.
理由如下先計算再求得,
,再證面面面.試題解析:(Ⅰ)由已知得:面面
(II)分析可知,點滿足時,面BDR⊥面BDC.
理由如下:取中點,連接
容易計算在中∵可知,
∴在中,
又在中,為中點面,
∴面面.19、(1)見解析;(2)見解析.【解析】
(1)連接,證明后即得線面平行;(2)可證明平面,然后得面面垂直.【詳解】(1)如圖,連接,∵分別是中點,∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【點睛】本題考查證明線面平行和面面垂直,掌握線面平行和面面垂直的判定定理是解題關(guān)鍵.20、(1);(2)【解析】
(1)利用正弦定理邊化角,可整理求得,根據(jù)三角形為銳角三角形可確定的取值;(2)利用正弦定理可將轉(zhuǎn)化為,利用兩角和差正弦公式、輔助角公式整理得到,根據(jù)的范圍可求得正弦型函數(shù)的值域,進而得到所求取值范圍.【詳解】(1)由正弦定理得:為銳角三角形,,即(2)由正弦定理得:為銳角三角形,,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土地轉(zhuǎn)讓協(xié)議書范文6篇
- 七年級上學期教學計劃范文六篇
- 2023年一周工作計劃
- 形容冬天寒冷的經(jīng)典句子120句
- 三年級第二學期美術(shù)教學計劃
- 實習工作總結(jié)錦集十篇
- 新年工作計劃(3篇)
- 《秋天的水果》中班教案
- 大學生暑期三下鄉(xiāng)心得體會
- 防校園欺凌主題班會教案
- 《正態(tài)分布理論及其應(yīng)用研究》4200字(論文)
- GB/T 45086.1-2024車載定位系統(tǒng)技術(shù)要求及試驗方法第1部分:衛(wèi)星定位
- 電力電子技術(shù)(廣東工業(yè)大學)智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學
- 2024年中國移動甘肅公司招聘筆試參考題庫含答案解析
- 活動房結(jié)構(gòu)計算書
- 富氫水項目經(jīng)濟效益及投資價值分析(模板參考)
- 小流域水土保持綜合治理工程初步設(shè)計
- 增強熱塑性塑料復合管在我國的發(fā)展現(xiàn)狀
- 機械設(shè)計外文文獻翻譯、中英文翻譯、外文翻譯
- 美標漸開線花鍵計算程序2014.8
- 風動送樣手冊
評論
0/150
提交評論