版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山西省大同市平城區(qū)第一中學(xué)高一下數(shù)學(xué)期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,若,共線,則實數(shù)()A. B. C. D.62.若,,則的終邊所在的象限為()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限3.若關(guān)于x,y的方程組無解,則()A. B. C.2 D.4.已知,,則()A. B. C. D.5.函數(shù),當(dāng)上恰好取得5個最大值,則實數(shù)的取值范圍為()A. B. C. D.6.在空間四邊形中,,,,分別是,的中點,,則異面直線與所成角的大小為()A. B. C. D.7.l:的斜率為A.﹣2 B.2 C. D.8.設(shè),則下列不等式中正確的是()A. B.C. D.9.等差數(shù)列的首項為.公差不為,若成等比數(shù)列,則數(shù)列的前項和為()A. B. C. D.10.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75° B.60° C.45° D.30°二、填空題:本大題共6小題,每小題5分,共30分。11.計算:______.12.設(shè)a>1,b>1.若關(guān)于x,y的方程組無解,則的取值范圍是.13.已知向量,若,則_______14.一組樣本數(shù)據(jù)8,10,18,12的方差為___________.15.已知向量,,且,則______.16.若角的終邊經(jīng)過點,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.16種食品所含的熱量值如下:111123123164430190175236430320250280160150210123(1)求數(shù)據(jù)的中位數(shù)與平均數(shù);(2)用這兩種數(shù)字特征中的哪一種來描述這個數(shù)據(jù)集更合適?18.已知等比數(shù)列的公比,前項和為,且.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.三個內(nèi)角A,B,C對應(yīng)的三條邊長分別是,且滿足.(1)求角的大??;(2)若,,求.20.已知數(shù)列中,,點在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項;(3)設(shè)、分別為數(shù)列、的前項和是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.21.如圖,以O(shè)x為始邊作角與(),它們終邊分別單位圓相交于點、,已知點的坐標(biāo)為.(1)若,求角的值;(2)若·,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用向量平行的性質(zhì)直接求解.【詳解】向量,,共線,,解得實數(shù).故選:.【點睛】本題主要考查向量平行的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.2、B【解析】由一全正二正弦三正切四余弦可得的終邊所在的象限為第二象限,故選B.考點:三角函數(shù)3、A【解析】
由題可知直線與平行,再根據(jù)平行公式求解即可.【詳解】由題,直線與平行,故.故選:A【點睛】本題主要考查了二元一次方程組與直線間的位置關(guān)系,屬于基礎(chǔ)題.4、D【解析】由題意可得,即,則,所以,即,也即,所以,應(yīng)選答案D.點睛:解答本題的關(guān)鍵是借助題設(shè)中的條件獲得,進(jìn)而得到,求得,從而求出使得問題獲解.5、C【解析】
先求出取最大值時的所有的解,再解不等式,由解的個數(shù)決定出的取值范圍.【詳解】設(shè),所以,解得,所以滿足的值恰好只有5個,所以的取值可能為0,1,2,3,4,由,故選C.【點睛】本題主要考查正弦函數(shù)的最值以及不等式的解法,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力.6、D【解析】
平移兩條異面直線到相交,根據(jù)余弦定理求解.【詳解】如圖所示:設(shè)的中點為,連接,所以,則是所成的角或其補(bǔ)角,又根據(jù)余弦定理得:,所以,異面直線與所成角的為,故選D.【點睛】本題考查異面直線所成的角和余弦定理.注意異面直線所成的角的取值范圍是.7、B【解析】
先化成直線的斜截式方程即得直線的斜率.【詳解】由題得直線的方程為y=2x,所以直線的斜率為2.故選:B【點睛】本題主要考查直線斜率的求法,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.8、B【解析】
取,則,,只有B符合.故選B.考點:基本不等式.9、A【解析】
根據(jù)等比中項定義可得;利用和表示出等式,可構(gòu)造方程求得;利用等差數(shù)列求和公式求得結(jié)果.【詳解】由題意得:設(shè)等差數(shù)列公差為,則即:,解得:本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到等比中項、等差數(shù)列前項和公式的應(yīng)用;關(guān)鍵是能夠構(gòu)造方程求出公差,屬于??碱}型.10、B【解析】試題分析:由三角形的面積公式,得,即,解得,又因為三角形為銳角三角形,所以.考點:三角形的面積公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在分式的分子和分母中同時除以,然后利用常見的數(shù)列極限可計算出所求極限值.【詳解】.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.12、【解析】試題分析:方程組無解等價于直線與直線平行,所以且.又,為正數(shù),所以(),即取值范圍是.考點:方程組的思想以及基本不等式的應(yīng)用.13、【解析】
由題意利用兩個向量垂直的性質(zhì),兩個向量的數(shù)量積公式,求得的值.【詳解】因為向量,若,∴,則.故答案為:1.【點睛】本題主要考查兩個向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.14、14【解析】
直接利用平均數(shù)和方差的公式,即可得到本題答案.【詳解】平均數(shù),方差.故答案為:14【點睛】本題主要考查平均數(shù)公式與方差公式的應(yīng)用.15、【解析】
根據(jù)的坐標(biāo)表示,即可得出,解出即可.【詳解】,,.【點睛】本題主要考查平行向量的坐標(biāo)關(guān)系應(yīng)用.16、3【解析】
直接根據(jù)任意角三角函數(shù)的定義求解,再利用兩角和的正切展開代入求解即可【詳解】由任意角三角函數(shù)的定義可得:.則故答案為3【點睛】本題主要考查了任意角三角函數(shù)的定義和兩角和的正切計算,熟記公式準(zhǔn)確計算是關(guān)鍵,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)中位數(shù)為:,平均數(shù)為:;(2)用平均數(shù)描述這個數(shù)據(jù)更合適.【解析】
(1)根據(jù)中位數(shù)和平均數(shù)的定義計算即可;(2)根據(jù)平均數(shù)和平均數(shù)的優(yōu)缺點進(jìn)行選擇即可.【詳解】(1)將數(shù)據(jù)從小到大排列得:111,123,123,123,150,160,164,175,190,210,236,250,280,320,430,430.所以中位數(shù)為:,平均數(shù)為:;(2)用平均數(shù)描述這個數(shù)據(jù)更合適,理由如下:平均數(shù)反映的是總體的一個情況,中位數(shù)只是數(shù)列從小到大排列得到的最中間的一個數(shù)或兩個數(shù),所以平均數(shù)更能反映總體的一個整體情況.【點睛】本題考查數(shù)據(jù)的數(shù)字特征的計算及應(yīng)用,考查基礎(chǔ)知識和基本技能,屬于??碱}.18、(1).(2)【解析】
(1)根據(jù)條件列出等式,求解公比后即可求解出通項公式;(2)錯位相減法求和,注意對于“錯位”的理解.【詳解】解:(1)由,得,則∴,∴數(shù)列的通項公式為.(2)由,∴,①,②①②,得,∴.【點睛】本題考查等比數(shù)列通項和求和,難度較易.對于等差乘以等比的形式的數(shù)列,求和注意選用錯位相減法.19、⑴(2)【解析】
⑴由正弦定理及,得,因為,所以;⑵由余弦定理,解得【詳解】⑴由正弦定理得,由已知得,,因為,所以⑵由余弦定理,得即,解得或,負(fù)值舍去,所以【點睛】解三角形問題,常要求正確選擇正弦定理或余弦定理對三角形中的邊、角進(jìn)行轉(zhuǎn)換,再進(jìn)行求解,同時注意三角形當(dāng)中的邊角關(guān)系,如內(nèi)角和為180度等20、(1)證明過程見詳解;(2);(3)存在實數(shù),使得數(shù)列為等差數(shù)列.【解析】
(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項;(3)把數(shù)列an}、{bn}通項公式代入an+2bn,進(jìn)而得到Sn+2T的表達(dá)式代入Tn,進(jìn)而推斷當(dāng)且僅當(dāng)λ=2時,數(shù)列是等差數(shù)列.【詳解】(1)因為點在直線上,所以,因此由得所以數(shù)列是以為公比的等比數(shù)列;(2)因為,由得,故,由(1)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使數(shù)列是等差數(shù)列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴當(dāng)且僅當(dāng)λ=2時,數(shù)列是等差數(shù)列.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記等比數(shù)列的定義,等比數(shù)列的通項公式,以及等差數(shù)列與等比數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年四川省廣元市朝天區(qū)人力資源和社會保障局事業(yè)單位招聘45人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川涼山越西縣事業(yè)單位考試招聘20人高頻重點提升(共500題)附帶答案詳解
- 2025上半年浙江麗水松陽縣國企系統(tǒng)招引高層次和急需緊缺人才高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇無錫市市屬事業(yè)單位招聘105人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川遂寧射洪市招聘事業(yè)單位工作人員90人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川瀘州瀘縣人民法院招聘工作人員13人歷年高頻重點提升(共500題)附帶答案詳解
- 2025光伏發(fā)電項目并網(wǎng)電力交易合同
- 2025年度電影特效外聘演員演出協(xié)議3篇
- 2025年度創(chuàng)業(yè)合伙關(guān)系解除及財產(chǎn)清算合同
- 2025年度國際學(xué)校外籍教師招聘合同3篇
- 機(jī)架結(jié)構(gòu)設(shè)計
- 護(hù)理部副主任績效考核評分細(xì)則表
- 手衛(wèi)生規(guī)范課件
- “統(tǒng)計與概率”在小學(xué)數(shù)學(xué)教材中的編排分析
- 臭氧發(fā)生器確認(rèn)方案W
- xx中心小學(xué)綜合實踐基地計劃模板(完整版)
- 談心談話記錄表 (空白表)
- LY/T 1863-2009自然保護(hù)區(qū)生態(tài)旅游評價指標(biāo)
- T-JSTJXH 15-2022 裝配式勁性柱-鋼梁框架結(jié)構(gòu)設(shè)計規(guī)程
- 2023年上海市市高考物理一模試卷含解析
- 市政工程人行道維修方案
評論
0/150
提交評論