四川省簡陽市2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測試題含解析2_第1頁
四川省簡陽市2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測試題含解析2_第2頁
四川省簡陽市2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測試題含解析2_第3頁
四川省簡陽市2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測試題含解析2_第4頁
四川省簡陽市2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測試題含解析2_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省簡陽市2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設的內角,,所對的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.92.已知函數(shù),此函數(shù)的圖象如圖所示,則點的坐標是()A. B. C. D.3.在長方體中,,,則直線與平面所成角的正弦值為()A. B. C. D.4.某賽季甲、乙兩名籃球運動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則下列結論錯誤的是()A.B.甲得分的方差是736C.乙得分的中位數(shù)和眾數(shù)都為26D.乙得分的方差小于甲得分的方差5.已知與之間的幾組數(shù)據(jù)如下表則與的線性回歸方程必過()A.點 B.點C.點 D.點6.設函數(shù)的最大值為,最小值為,則與滿足的關系是()A. B.C. D.7.()A.0 B.1 C.-1 D.28.函數(shù)在區(qū)間(,)內的圖象是()A. B. C. D.9.在中,,則的形狀是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形10.若直線過兩點,,則的斜率為()A. B. C.2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.若直線與直線平行,則實數(shù)a的值是________.12.已知函數(shù)y=sin(x+)(>0,-<)的圖象如圖所示,則=________________.13.如圖,在正方體中,點P是上底面(含邊界)內一動點,則三棱錐的主視圖與俯視圖的面積之比的最小值為______.14.若無窮等比數(shù)列的各項和等于,則的取值范圍是_____.15.設直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________16.設數(shù)列滿足,,,,______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,內角A,B,C所對的邊分別為a,b,c,已知,,.(1)求邊c的值;(2)求的面積18.在中,內角所對的邊分別為.已知,.(I)求的值;(II)求的值.19.已知.(1)化簡;(2)若是第二象限角,且,求的值.20.已知過點且斜率為的直線與圓:交于,兩點.(1)求斜率的取值范圍;(2)為坐標原點,求證:直線與的斜率之和為定值.21.已知等差數(shù)列an滿足a3=5,a6=a4(1)求數(shù)列an,b(2)設cn=anbn2

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當且僅當時等號成立,又因為,所以,當且僅當時等號成立,故三角形的面積的最大值為,故選D.【點睛】本題主要考查了基本不等式的應用,以及三角形的面積公式的應用,著重考查了轉化思想,以及推理與運算能力,屬于基礎題.2、B【解析】

根據(jù)確定的兩個相鄰零點的值可以求出最小正周期,進而利用正弦型最小正周期公式求出的值,最后把其中的一個零點代入函數(shù)的解析式中,求出的值即可.【詳解】設函數(shù)的最小正周期為,因此有,當時,,因此的坐標為:.故選:B【點睛】本題考查了通過三角函數(shù)的圖象求參數(shù)問題,屬于基礎題.3、D【解析】

由題意,由于圖形中已經出現(xiàn)了兩兩垂直的三條直線,所以可以利用空間向量的方法求解直線與平面所成的夾角.【詳解】解:以點為坐標原點,以所在的直線為軸、軸、軸,建立空間直角坐標系,

則,

為平面的一個法向量.

∴直線與平面所成角的正弦值為.故選:D.【點睛】此題重點考查了利用空間向量,抓住直線與平面所成的角與該直線的方向向量與平面的法向量的夾角之間的關系,利用向量方法解決立體幾何問題.4、B【解析】

根據(jù)題意,依次分析選項,綜合即可得答案.【詳解】根據(jù)題意,依次分析選項:對于A,甲得分的極差為32,30+x﹣6=32,解得:x=8,A正確,對于B,甲得分的平均值為,其方差為,B錯誤;對于C,乙的數(shù)據(jù)為:12、25、26、26、31,其中位數(shù)、眾數(shù)都是26,C正確,對于D,乙得分比較集中,則乙得分的方差小于甲得分的方差,D正確;故選:B.【點睛】本題考查莖葉圖的應用,涉及數(shù)據(jù)極差、平均數(shù)、中位數(shù)、眾數(shù)、方差的計算,屬于基礎題.5、C【解析】

根據(jù)線性回歸方程必過樣本中心點,即可得到結論.【詳解】,,8根據(jù)線性回歸方程必過樣本中心點,可得與的線性回歸方程必過.故選:C.【點睛】本題考查線性回歸方程,解題的關鍵是利用線性回歸方程必過樣本中心點,屬于基礎題.6、B【解析】

將函數(shù)化為一個常數(shù)函數(shù)與一個奇函數(shù)的和,再利用奇函數(shù)的對稱性可得答案.【詳解】因為,令,則,所以為奇函數(shù),所以,所以,故選:B【點睛】本題考查了兩角差的余弦公式,考查了奇函數(shù)的對稱性的應用,屬于中檔題.7、A【解析】

直接利用三角函數(shù)的誘導公式化簡求值.【詳解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故選A.【點睛】本題考查利用誘導公式化簡求值,是基礎的計算題.8、D【解析】解:函數(shù)y=tanx+sinx-|tanx-sinx|=分段畫出函數(shù)圖象如D圖示,故選D.9、B【解析】

將,分別代入中,整理可得,即可得到,進而得到結論【詳解】由題可得,即在中,,,即又,是直角三角形,故選B【點睛】本題考查三角形形狀的判定,考查和角公式,考查已知三角函數(shù)值求角10、C【解析】

直接運用斜率計算公式求解.【詳解】因為直線過兩點,,所以直線的斜率,故本題選C.【點睛】本題考查了斜率的計算公式,考查了數(shù)學運算能力、識記公式的能力.二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】

解方程即得解.【詳解】因為直線與直線平行,所以,所以或.當時,兩直線重合,所以舍去.當時,兩直線平行,滿足題意.故答案為:【點睛】本題主要考查兩直線平行的性質,意在考查學生對這些知識的理解掌握水平,屬于基礎題.12、【解析】

由圖可知,13、【解析】

設正方體的棱長為,求出三棱錐的主視圖面積為定值,當與重合時,三棱錐的俯視圖面積最大,此時主視圖與俯視圖面積比值最小.【詳解】設正方體的棱長為,則三棱錐的主視圖是底面邊為,高為的三角形,其面積為,當與重合時,三棱錐的俯視圖為正方形,其面積最大,最大值為,所以,三棱錐的主視圖與俯視圖面積比的最小值為.故答案為:.【點睛】本題考查了空間幾何體的三視圖面積計算應用問題,屬于基礎題.14、.【解析】

根據(jù)題意可知,,從而得出,再由,即可求出的取值范圍.【詳解】解:由題意可知,,且,,,,或,故的取值范圍是,故答案為:.【點睛】本題主要考查等比數(shù)列的極限問題,解題時要熟練掌握無窮等比數(shù)列的極限和,屬于基礎題.15、【解析】因為圓心坐標與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應填答案.16、8073【解析】

對分奇偶討論求解即可【詳解】當為偶數(shù)時,當為奇數(shù)時,故當為奇數(shù)時,故故答案為8073【點睛】本題考查數(shù)列遞推關系,考查分析推理能力,對分奇偶討論發(fā)現(xiàn)規(guī)律是解決本題的關鍵,是難題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)3【解析】

(1)由可得,利用正弦定理可得,即可求解;(2)先利用余弦定理求得,即可求得,再利用三角形面積公式求解即可【詳解】解:(1)因為,所以,即,則(2)由(1),則,所以,所以【點睛】本題考查利用正弦定理邊角互化,考查利用余弦定理求角,考查三角形面積公式的應用18、(Ⅰ)(Ⅱ)【解析】試題分析:利用正弦定理“角轉邊”得出邊的關系,再根據(jù)余弦定理求出,進而得到,由轉化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結果.試題解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A為鈍角,所以.于是,,故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉角”尋求角的關系,利用“角轉邊”尋求邊的關系,利用余弦定理借助三邊關系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經常利用三角形內角和定理,三角形面積公式,結合正、余弦定理解題.19、(1)(2)【解析】

(1)利用三角函數(shù)的誘導公式即可求解.(2)利用誘導公式可得,再利用同角三角函數(shù)的基本關系即可求解.【詳解】(1)由題意得.(2)∵,∴.又為第二象限角,∴,∴.【點睛】本題考查了三角函數(shù)的誘導公式以及同角三角函數(shù)的基本關系,屬于基礎題.20、(1)(2)見解析【解析】

(1)根據(jù)圓心到直線的距離小于半徑得到答案.(2)聯(lián)立直線與圓方程:.韋達定理得計算,化簡得到答案.【詳解】解:(1)直線的方程為:即.由得圓心,半徑.直線與圓相交得,即.解得.所以斜率的取值范圍為.(2)聯(lián)立直線與圓方程:.消去整理得.設,,根據(jù)韋達定理得.則.∴直線與的斜率之和為定值1.【點睛】本題考查了斜率的取值范圍,圓錐曲線的定值問題,意在考查學生的計算能力.21、(1)an=2n-1,【解析】

(1)利用等差數(shù)列、等比數(shù)列的通項公式即可求得;(2)由(1)知,cn=anbn2【詳解】(1)設等差數(shù)列an的公差為d,等比數(shù)列bn的公比為因為a6=a4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論