版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省濟寧市魯橋鎮(zhèn)第一中學(xué)2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.有理數(shù)a,b,c,d在數(shù)軸上的對應(yīng)點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)>﹣4 B.bd>0 C.|a|>|b| D.b+c>02.下列四個幾何體中,主視圖與左視圖相同的幾何體有()A.1個 B.2個 C.3個 D.4個3.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆剑褹B⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設(shè)該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C4.剪紙是我國傳統(tǒng)的民間藝術(shù),下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.5.《九章算術(shù)》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數(shù)若其意義相反,則分別叫做正數(shù)與負數(shù),若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃6.共享單車為市民短距離出行帶來了極大便利.據(jù)2017年“深圳互聯(lián)網(wǎng)自行車發(fā)展評估報告”披露,深圳市日均使用共享單車2590000人次,其中2590000用科學(xué)記數(shù)法表示為()A.259×104 B.25.9×105 C.2.59×106 D.0.259×1077.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.48.下面運算結(jié)果為的是A. B. C. D.9.下列各式計算正確的是()A.a(chǎn)4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a(chǎn)12÷a3=a410.下列計算或化簡正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.要使分式有意義,則x的取值范圍為_________.12.因式分解:=___.13.化簡代數(shù)式(x+1+)÷,正確的結(jié)果為_____.14.計算的結(jié)果等于__________.15.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.16.寫出一個平面直角坐標(biāo)系中第三象限內(nèi)點的坐標(biāo):(__________)17.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.三、解答題(共7小題,滿分69分)18.(10分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.19.(5分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當(dāng)動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.20.(8分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.21.(10分)(操作發(fā)現(xiàn))(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.①求∠EAF的度數(shù);②DE與EF相等嗎?請說明理由;(類比探究)(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.請直接寫出探究結(jié)果:①∠EAF的度數(shù);②線段AE,ED,DB之間的數(shù)量關(guān)系.22.(10分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數(shù).()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)23.(12分)如圖,平面直角坐標(biāo)系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內(nèi)一點C,當(dāng)△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標(biāo);(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.24.(14分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點F,如果∠AFE=∠D,求證:.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)數(shù)軸上點的位置關(guān)系,可得a,b,c,d的大小,根據(jù)有理數(shù)的運算,絕對值的性質(zhì),可得答案.【詳解】解:由數(shù)軸上點的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合題意;B、bd<0,故B不符合題意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合題意;D、b+c<0,故D不符合題意;故選:C.【點睛】本題考查了有理數(shù)大小的比較、有理數(shù)的運算,絕對值的性質(zhì),熟練掌握相關(guān)的知識是解題的關(guān)鍵2、D【解析】解:①正方體的主視圖與左視圖都是正方形;②球的主視圖與左視圖都是圓;③圓錐主視圖與左視圖都是三角形;④圓柱的主視圖和左視圖都是長方形;故選D.3、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,看懂圖形,認真分析是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),如果把一個圖形繞某個點旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.5、B【解析】試題分析:由題意知,“-”代表零下,因此-3℃表示氣溫為零下3℃.故選B.考點:負數(shù)的意義6、C【解析】
絕對值大于1的正數(shù)可以科學(xué)計數(shù)法,a×10n,即可得出答案.【詳解】n由左邊第一個不為0的數(shù)字前面的0的個數(shù)決定,所以此處n=6.【點睛】本題考查了科學(xué)計數(shù)法的運用,熟悉掌握是解決本題的關(guān)鍵.7、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB
∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.8、B【解析】
根據(jù)合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.【點睛】本題考查了整式的運算,解題的關(guān)鍵是掌握合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.9、C【解析】
根據(jù)同底數(shù)冪的乘法,可判斷A、B,根據(jù)冪的乘方,可判斷C,根據(jù)同底數(shù)冪的除法,可判斷D.【詳解】A.a(chǎn)4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a(chǎn)12÷a3=a9,故D錯誤.故選C.【點睛】本題考查了同底數(shù)冪的除法,同底數(shù)冪的除法底數(shù)不變指數(shù)相減是解題的關(guān)鍵.10、D【解析】解:A.不是同類二次根式,不能合并,故A錯誤;B.
,故B錯誤;C.,故C錯誤;D.,正確.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、x≠1【解析】由題意得x-1≠0,∴x≠1.故答案為x≠1.12、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關(guān)鍵.13、2x【解析】
根據(jù)分式的運算法則計算即可求解.【詳解】(x+1+)÷===2x.故答案為2x.【點睛】本題考查了分式的混合運算,熟知分式的混合運算順序及運算法則是解答本題的關(guān)鍵.14、【解析】
根據(jù)完全平方公式進行展開,然后再進行同類項合并即可.【詳解】解:.故填.【點睛】主要考查的是完全平方公式及二次根式的混合運算,注意最終結(jié)果要化成最簡二次根式的形式.15、【解析】
設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.16、答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負數(shù)即可.【解析】
讓橫坐標(biāo)、縱坐標(biāo)為負數(shù)即可.【詳解】在第三象限內(nèi)點的坐標(biāo)為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負數(shù)即可.17、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.三、解答題(共7小題,滿分69分)18、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【解析】
(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.19、(1)10;(2).【解析】
(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設(shè)OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當(dāng)點M、N在移動過程中,線段EF的長度不變,它的長度為2.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、等腰三角形的性質(zhì),關(guān)鍵是做出輔助線,找出全等和相似的三角形20、(1)畫圖見解析;(2)畫圖見解析;(3).【解析】
(1)直接利用直角三角形的性質(zhì)結(jié)合勾股定理得出符合題意的圖形;(2)根據(jù)矩形的性質(zhì)畫出符合題意的圖形;
(3)根據(jù)題意利用勾股定理得出結(jié)論.【詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據(jù)勾股定理得EM=.【點睛】本題考查了勾股定理與作圖,解題的關(guān)鍵是熟練的掌握直角三角形的性質(zhì)與勾股定理.21、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1【解析】試題分析:(1)①由等邊三角形的性質(zhì)得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,證明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF即可;(1)①由等腰直角三角形的性質(zhì)得出AC=BC,∠BAC=∠B=45°,證出∠ACF=∠BCD,由SAS證明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出結(jié)論.試題解析:解:(1)①∵△ABC是等邊三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE1+DB1=DE1,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.22、(1)袋子中白球有2個;(2).【解析】試題分析:(1)設(shè)袋子中白球有x個,根據(jù)概率公式列方程解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,求得所有等可能的結(jié)果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.試題解析:(1)設(shè)袋子中白球有x個,根據(jù)題意得:=,解得:x=2,經(jīng)檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.考點:列表法與樹狀圖法;概率公式.23、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】
(1)直接利用線段AB的“等長點”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質(zhì)即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時,如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點”,∵點C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點”,∵點C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租車行業(yè)合同范例
- 通訊勞動合同范例
- 門市燈具購銷合同范例
- 房屋定金居間合同范例
- 設(shè)計合作包合同范例
- 設(shè)備委托加工合同范例
- 電視購銷安裝合同范例
- 網(wǎng)絡(luò)產(chǎn)品合同范例
- 2024年度窗簾設(shè)計大賽參賽作品授權(quán)合同3篇
- 拆遷物品專賣合同范例
- 國開(浙江)2024年秋《中國建筑史(本)》形考作業(yè)1-4答案
- 2024年海南省高考歷史試卷(含答案解析)
- 大學(xué)生思想道德與法治課件
- 專題07:回憶性散文閱讀(考點串講)
- 浙江省數(shù)字化改革總體方案
- 光伏屋頂安全施工方案怎么寫
- 創(chuàng)業(yè)小白實操手冊 第2版 課件全套 鄧白君 第1-8章 打開創(chuàng)業(yè)思維- 寫計劃練路演
- 《新能源汽車維護與保養(yǎng)》課件-任務(wù)2 動力蓄電池系統(tǒng)檢查與維護
- 北師大版二年級數(shù)學(xué)上冊全單元測試題【附答案】
- 認知行為療法在疼痛管理中的作用
- 學(xué)校采購課程合同范本
評論
0/150
提交評論