2023-2024學(xué)年西藏林芝二高高一下數(shù)學(xué)期末綜合測試試題含解析_第1頁
2023-2024學(xué)年西藏林芝二高高一下數(shù)學(xué)期末綜合測試試題含解析_第2頁
2023-2024學(xué)年西藏林芝二高高一下數(shù)學(xué)期末綜合測試試題含解析_第3頁
2023-2024學(xué)年西藏林芝二高高一下數(shù)學(xué)期末綜合測試試題含解析_第4頁
2023-2024學(xué)年西藏林芝二高高一下數(shù)學(xué)期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年西藏林芝二高高一下數(shù)學(xué)期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.三角形的三條邊長是連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則該三角形的最大邊長為()A.4 B.5 C.6 D.72.設(shè)集合,則()A. B. C. D.3.已知等差數(shù)列和的前項和分別為和,.若,則的取值集合為()A. B.C. D.4.在等比數(shù)列中,,,則數(shù)列的前六項和為()A.63 B.-63 C.-31 D.315.如圖所示,在邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,向該正方形中隨機撒一粒豆子,它落在陰影區(qū)域的概率是,則該陰影區(qū)域的面積是()A.3 B. C. D.6.已知是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.若,則()A. B. C.2 D.8.已知為的一個內(nèi)角,向量.若,則角()A. B. C. D.9.經(jīng)過點,和直線相切,且圓心在直線上的圓方程為()A. B.C. D.10.已知,,,則與的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調(diào)增區(qū)間是_________12.在三棱錐中,平面,是邊長為2的正三角形,,則三棱錐的外接球的表面積為__________.13.某住宅小區(qū)有居民萬戶,從中隨機抽取戶,調(diào)查是否安裝寬帶,調(diào)查結(jié)果如下表所示:寬帶租戶業(yè)主已安裝未安裝則該小區(qū)已安裝寬帶的居民估計有______戶.14.已知數(shù)列的前n項和,則數(shù)列的通項公式是______.15.不共線的三個平面向量,,兩兩所成的角相等,且,,則__________.16.從集合A={-1,1,2}中隨機選取一個數(shù)記為k,從集合B={-2,1,2}中隨機選取一個數(shù)記為b,則直線y=kx+b不經(jīng)過第三象限的概率為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,三棱柱的側(cè)面是邊長為2的菱形,,且.(1)求證:;(2)若,當二面角為直二面角時,求三棱錐的體積.18.已知函數(shù),,(1)求的最小正周期;(2)若,求的最大值和最小值,并寫出相應(yīng)的x的值.19.已知的頂點,AB邊上的中線CM所在直線方程為,AC邊上的高BH所在直線方程為.(1)求C點坐標;(2)求直線BC的方程.20.如圖所示,在平面直角坐標系中,角和的頂點與坐標原點重合,始邊與軸的非負半軸重合,終邊分別與單位圓交于點、兩點,點的縱坐標為.(Ⅰ)求的值;(Ⅱ)若,求的值.21.已知數(shù)列滿足,,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)三角形滿足的兩個條件,設(shè)出三邊長分別為,三個角分別為,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出,然后利用余弦定理得到,將表示出的代入,整理后得到關(guān)于的方程,求出方程的解得到的值,【詳解】解:設(shè)三角形三邊是連續(xù)的三個自然,三個角分別為,

由正弦定理可得:,

,

再由余弦定理可得:,

化簡可得:,解得:或(舍去),

∴,故三角形的三邊長分別為:,故選:C.【點睛】此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.2、B【解析】

先求得集合,再結(jié)合集合的交集的概念及運算,即可求解.【詳解】由題意,集合,所以.故選:B.【點睛】本題主要考查了集合的交集的運算,其中解答中正確求解集合B,結(jié)合集合的交集的概念與運算求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、D【解析】

首先根據(jù)即可得出,再根據(jù)前n項的公式計算出即可?!驹斀狻?,選D.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),屬于難題.等差數(shù)列的常用性質(zhì)有:(1)通項公式的推廣:

(2)若

為等差數(shù)列,

;(3)若是等差數(shù)列,公差為,

,則是公差

的等差數(shù)列;4、B【解析】

利用等比數(shù)列通項公式求出公式,由此能求出數(shù)列的前六項和.【詳解】在等比數(shù)列中,,,解得數(shù)列的前六項和為:.故選:【點睛】本題考查等比數(shù)列通項公式求解基本量,屬于基礎(chǔ)題.5、B【解析】

利用幾何概型的意義進行模擬試驗,即估算不規(guī)則圖形面積的大?。驹斀狻空叫沃须S機撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率,,又,.故選:B.【點睛】本題考查幾何概型的意義進行模擬試驗,計算不規(guī)則圖形的面積,考查邏輯推理能力和運算求解能力,求解時注意豆子落在陰影區(qū)域內(nèi)的概率與陰影部分面積及正方形面積之間的關(guān)系.6、D【解析】

根據(jù)空間線、面的位置關(guān)系有關(guān)定理,對四個選項逐一分析排除,由此得出正確選項.【詳解】對于A選項,直線有可能在平面內(nèi),故A選項錯誤.對于B選項,兩個平面有可能相交,平行于它們的交線,故B選項錯誤.對于C選項,可能平行,故C選項錯誤.根據(jù)線面垂直的性質(zhì)定理可知D選項正確.故選D.【點睛】本小題主要考查空間線、面位置關(guān)系的判斷,屬于基礎(chǔ)題.7、D【解析】

將轉(zhuǎn)化為,結(jié)合二倍角的正切公式即可求出.【詳解】故選D【點睛】本題主要考查了二倍角的正切公式,關(guān)鍵是將轉(zhuǎn)化為,利用二倍角的正切公式求出,屬于基礎(chǔ)題.8、C【解析】

帶入計算即可.【詳解】即,選C.【點睛】本題考查向量向量垂直的坐標運算,屬于基礎(chǔ)題.9、B【解析】

設(shè)出圓心坐標,由圓心到切線的距離和它到點的距離都是半徑可求解.【詳解】由題意設(shè)圓心為,則,解得,即圓心為,半徑為.圓方程為.故選:B.【點睛】本題考查求圓的標準方程,考查直線與圓的位置關(guān)系.求出圓心坐標與半徑是求圓標準方程的基本方法.10、C【解析】

設(shè)與的夾角為,計算出、、的值,再利用公式結(jié)合角的取值范圍可求出的值.【詳解】設(shè)與的夾角為,則,,,另一方面,,,,因此,,,因此,,故選C.【點睛】本題考查利用平面向量的數(shù)量積計算平面向量的夾角,解題的關(guān)鍵就是計算出、、的值,考查計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、,【解析】

令,即可求得結(jié)果.【詳解】令,解得:,所以單調(diào)遞增區(qū)間是,故填:,【點睛】本題考查了型如:單調(diào)區(qū)間的求法,屬于基礎(chǔ)題型.12、【解析】

設(shè)三棱錐的外接球半徑為,利用正弦定理求出的外接圓半徑,再利用公式可計算出外接球半徑,最后利用球體的表面積公式可計算出結(jié)果.【詳解】由正弦定理可得,的外接圓直徑為,,設(shè)三棱錐的外接球半徑為,平面,,因此,三棱錐的外接球表面積為,故答案為.【點睛】本題考查多面體的外接球,考查球體表面積的計算,在求解直棱柱后直棱錐的外接球,若底面外接圓半徑為,高為,可利用公式得出外接球的半徑,解題時要熟悉這些結(jié)論的應(yīng)用.13、【解析】

計算出抽樣中已安裝寬帶的用戶比例,乘以總?cè)藬?shù),求得小區(qū)已安裝寬帶的居民數(shù).【詳解】抽樣中已安裝寬帶的用戶比例為,故小區(qū)已安裝寬帶的居民有戶.【點睛】本小題主要考查用樣本估計總體,考查頻率的計算,屬于基礎(chǔ)題.14、【解析】

時,,利用時,可得,最后驗證是否滿足上式,不滿足時候,要寫成分段函數(shù)的形式.【詳解】當時,,當時,=,又時,不適合,所以.【點睛】本題考查了由求,注意使用求時的條件是,所以求出后還要驗證適不適合,如果適合,要將兩種情況合成一種情況作答,如果不適合,要用分段函數(shù)的形式作答.屬于中檔題.15、4【解析】

故答案為:4【點睛】本題主要考查向量的位置關(guān)系,考查向量模的運算的處理方法.由于三個向量兩兩所成的角相等,故它們兩兩的夾角為,由于它們的模都是已知的,故它們兩兩的數(shù)量積也可以求出來,對后平方再開方,就可以計算出最后結(jié)果.16、【解析】由題意,基本事件總數(shù)為3×3=9,其中滿足直線y=kx+b不經(jīng)過第三象限的,即滿足有k=-1,b=1或k=-1,b=2兩種,故所求的概率為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)連結(jié),交于點,連結(jié),推導(dǎo)出,又,從而面,進而,推導(dǎo)出,由此能得到結(jié)論;(2)由題意,可證得是二面角的平面角,進而得,進而計算得,進而利用棱錐的體積公式計算即可.【詳解】(1)連結(jié),交于點,連結(jié),因為側(cè)面是菱形,所以,又因為,,所以面而平面,所以,因為,所以,而,所以,故.(2)因為,為的中點,則,由(1)可知,因為,所以面,作,連結(jié),由(1)知,所以且所以是二面角的平面角,依題意得,,所以,設(shè),則,,又由,,所以由,解得,所以.【點睛】本題考查兩個角相等的證明,考查三棱錐的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.18、(1)(2)時最大值為2,時最小值【解析】

(1)由二倍角公式和輔助角公式可得,再由周期公式,可得所求值(2)由的范圍,可得的范圍,由于余弦函數(shù)的圖象和性質(zhì),可得所求最值.【詳解】(1)函數(shù),可得的最小正周期為;(2),,可得,,可得當即時,可得取得最大值2;當,即時,可得取得最小值.【點睛】本題考查二倍角公式和兩角差的余弦函數(shù),考查余弦函數(shù)的圖象和性質(zhì),考查運算能力,屬于基礎(chǔ)題.19、(1);(2)【解析】

(1)根據(jù)點斜式求出AC邊所在的直線方程,再由CM所在直線方程,兩方程聯(lián)立即可求解.(2)設(shè),根據(jù)題意可得,,兩式聯(lián)立解得的值,再根據(jù)兩點式即可得到直線BC的方程.【詳解】(1)AC邊上的高BH所在直線方程為,且,AC邊所在的直線方程為,由AB邊上的中線CM所在直線方程為,,解得,故C點坐標為.(2)設(shè),則由AC邊上的高BH所在直線方程為,可得,AB邊上的中線CM所在直線方程為,,,解得,故點的坐標為,則直線BC的方程為,即.【點睛】本題考查了點斜式方程、兩點式方程,同時考查了解二元一次方程組,屬于基礎(chǔ)題.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由題意知的值,可求得和的值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論