遼寧省沈陽二中、撫順二中2024年高三第二次聯(lián)考數(shù)學試卷含解析_第1頁
遼寧省沈陽二中、撫順二中2024年高三第二次聯(lián)考數(shù)學試卷含解析_第2頁
遼寧省沈陽二中、撫順二中2024年高三第二次聯(lián)考數(shù)學試卷含解析_第3頁
遼寧省沈陽二中、撫順二中2024年高三第二次聯(lián)考數(shù)學試卷含解析_第4頁
遼寧省沈陽二中、撫順二中2024年高三第二次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

遼寧省沈陽二中、撫順二中2024年高三第二次聯(lián)考數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.2.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.3.若復數(shù)是純虛數(shù),則()A.3 B.5 C. D.4.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.1005.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.6.函數(shù)的圖象大致為()A. B.C. D.7.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.8.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立9.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.10.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.23311.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.12.已知為銳角,且,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為橢圓在第一象限上的點,則的最小值為________.14.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點,從點測得點的仰角,點的仰角以及;從點測得.已知山高,則山高__________.15.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養(yǎng)了此種盆栽植物10株,設為其中成活的株數(shù),若的方差,,則________.16.點P是△ABC所在平面內(nèi)一點且在△ABC內(nèi)任取一點,則此點取自△PBC內(nèi)的概率是____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了加強環(huán)保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學期望.18.(12分)隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:根據(jù)這9年的數(shù)據(jù),對和作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對和作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.984.(1)如果要用線性回歸方程預測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,方案一:選取這9年數(shù)據(jù)進行預測,方案二:選取后5年數(shù)據(jù)進行預測.從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?附:相關性檢驗的臨界值表:(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.19.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標方程;(Ⅱ)設點,直線與曲線相交于,,求的值.20.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若對任意成立,求實數(shù)的取值范圍.21.(12分)棉花的纖維長度是評價棉花質(zhì)量的重要指標,某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取21根棉花纖維進行統(tǒng)計,結果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過1.125的前提下認為“纖維長度與土壤環(huán)境有關系”.甲地乙地總計長纖維短纖維總計附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學期望.22.(10分)移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費的一種支付方式,為調(diào)查市民使用移動支付的年齡結構,隨機對100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡是否有關?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調(diào)查,從這10人隨機中選出3人頒發(fā)參與獎勵,設年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結合思想和向量法的應用,屬于中檔題.2、C【解析】

設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內(nèi)點差法求直線方程,意在考查學生的計算能力和應用能力.3、C【解析】

先由已知,求出,進一步可得,再利用復數(shù)模的運算即可【詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.【點睛】本題考查復數(shù)的除法、復數(shù)模的運算,考查學生的運算能力,是一道基礎題.4、D【解析】

由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學生分析問題的能力,難度容易.5、B【解析】

解:當直線過點時,最大,故選B6、A【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.7、C【解析】

根據(jù)拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.8、A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數(shù)形結合方法,考查了推理能力與計算能力,屬于中檔題.9、B【解析】

根據(jù)焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.10、C【解析】

計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.11、D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結合即可得到答案.【詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規(guī)劃相關的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學生轉(zhuǎn)化與劃歸的思想,是一道中檔題.12、C【解析】

由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導數(shù)、單調(diào)性和極值,即可得到所求最小值.【詳解】解:設點,,其中,,由,,,可設,導數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時,函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點睛】本題考查橢圓參數(shù)方程的應用,利用三角函數(shù)的恒等變換和導數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運算能力,屬于難題.14、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點:正弦定理的應用.15、【解析】

由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.16、【解析】

設是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結合幾何概型求得點取自三角形的概率.【詳解】設是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內(nèi)的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)所抽取的人中得分落在組和內(nèi)的人數(shù)分別為人、人;(2)分布列見解析,.【解析】

(1)將分別乘以區(qū)間、對應的矩形面積可得出結果;(2)由題可知,隨機變量的可能取值為、、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,并由此計算出隨機變量的數(shù)學期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數(shù)有(人),得分落在組的人數(shù)有(人).因此,所抽取的人中得分落在組的人數(shù)有人,得分落在組的人數(shù)有人;(2)由題意可知,隨機變量的所有可能取值為、、,,,,所以,隨機變量的分布列為:所以,隨機變量的期望為.【點睛】本題考查利用頻率分布直方圖計算頻數(shù),同時也考查了離散型隨機變量分布列與數(shù)學期望的求解,考查計算能力,屬于基礎題.18、(1)選取方案二更合適;(2)【解析】

(1)可以預見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預測后續(xù)數(shù)據(jù)的依據(jù),而后5年的數(shù)據(jù)得到的相關系數(shù)的絕對值,所以有的把握認為與具有線性相關關系,從而可得結論;(2)求得購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書,由此能求出購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統(tǒng)紙媒受到了強烈的沖擊,從表格中的數(shù)據(jù)中可以看出從2014年開始,廣告收入呈現(xiàn)逐年下降的趨勢,可以預見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預測后續(xù)數(shù)據(jù)的依據(jù).②相關系數(shù)越接近1,線性相關性越強,因為根據(jù)9年的數(shù)據(jù)得到的相關系數(shù)的絕對值,我們沒有理由認為與具有線性相關關系;而后5年的數(shù)據(jù)得到的相關系數(shù)的絕對值,所以有的把握認為與具有線性相關關系.(2)因為在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,所以從該網(wǎng)站購買該書籍的大量讀者中任取一位,購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書.概率為:.【點睛】本題主要考查最優(yōu)方案的選擇,考查了相關關系的定義以及互斥事件的概率與獨立事件概率公式的應用,考查閱讀能力與運算求解能力,屬于中檔題.與實際應用相結合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.19、(Ⅰ),;(Ⅱ).【解析】

(Ⅰ)由(為參數(shù))直接消去參數(shù),可得直線的普通方程,把兩邊同時乘以,結合,可得曲線的直角坐標方程;(Ⅱ)把代入,化為關于的一元二次方程,利用根與系數(shù)的關系及參數(shù)的幾何意義求解.【詳解】解:(Ⅰ)由(為參數(shù)),消去參數(shù),可得.∵,∴,即.∴曲線的直角坐標方程為;(Ⅱ)把代入,得.設,兩點對應的參數(shù)分別為,則,.不妨設,,∴.【點睛】本題考查簡單曲線的極坐標方程,考查參數(shù)方程化普通方程,明確直線參數(shù)方程中參數(shù)的幾何意義是解題的關鍵,是中檔題.20、(1)(2)【解析】

(1)把代入,利用零點分段討論法求解;(2)對任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解:(1)當時,不等式可化為.討論:①當時,,所以,所以;②當時,,所以,所以;③當時,,所以,所以.綜上,當時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數(shù)的取值范圍為.【點睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉(zhuǎn)化為最值問題求解,側重考查數(shù)學建模和數(shù)學運算的核心素養(yǎng).21、(1)在犯錯誤概率不超過的前提下認為“纖維長度與土壤環(huán)境有關系”.(2)見解析【解析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論