![2023-2024學(xué)年安徽省宣城市中學(xué)中考數(shù)學(xué)五模試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view2/M03/23/39/wKhkFmZqNyWAPfGDAAH6WBA6Tis259.jpg)
![2023-2024學(xué)年安徽省宣城市中學(xué)中考數(shù)學(xué)五模試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view2/M03/23/39/wKhkFmZqNyWAPfGDAAH6WBA6Tis2592.jpg)
![2023-2024學(xué)年安徽省宣城市中學(xué)中考數(shù)學(xué)五模試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view2/M03/23/39/wKhkFmZqNyWAPfGDAAH6WBA6Tis2593.jpg)
![2023-2024學(xué)年安徽省宣城市中學(xué)中考數(shù)學(xué)五模試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view2/M03/23/39/wKhkFmZqNyWAPfGDAAH6WBA6Tis2594.jpg)
![2023-2024學(xué)年安徽省宣城市中學(xué)中考數(shù)學(xué)五模試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view2/M03/23/39/wKhkFmZqNyWAPfGDAAH6WBA6Tis2595.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年安徽省宣城市中學(xué)中考數(shù)學(xué)五模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±202.甲、乙兩名同學(xué)進(jìn)行跳高測(cè)試,每人10次跳高的平均成績(jī)恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無(wú)法確定3.矩形具有而平行四邊形不具有的性質(zhì)是()A.對(duì)角相等 B.對(duì)角線互相平分C.對(duì)角線相等 D.對(duì)邊相等4.如圖,從一塊圓形紙片上剪出一個(gè)圓心角為90°的扇形ABC,使點(diǎn)A、B、C在圓周上,
將剪下的扇形作為一個(gè)圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為(
)A.12cm B.20cm C.24cm D.28cm5.如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,得到一“波浪線”,若點(diǎn)P(2018,m)在此“波浪線”上,則m的值為(
)A.4 B.﹣4 C.﹣6 D.66.如果,那么的值為()A.1 B.2 C. D.7.下列各數(shù):π,sin30°,﹣,其中無(wú)理數(shù)的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,9.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.510.若關(guān)于x的一元一次不等式組無(wú)解,則a的取值范圍是()A.a(chǎn)≥3 B.a(chǎn)>3 C.a(chǎn)≤3 D.a(chǎn)<311.﹣的絕對(duì)值是()A.﹣ B.﹣ C. D.12.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.9二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.關(guān)于x的不等式組的整數(shù)解有4個(gè),那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤414.若關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是______.15.如圖,在平面直角坐標(biāo)系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動(dòng)點(diǎn),當(dāng)△ABM是等腰三角形時(shí),M點(diǎn)的坐標(biāo)為_(kāi)____.16.a(chǎn)、b、c是實(shí)數(shù),點(diǎn)A(a+1、b)、B(a+2,c)在二次函數(shù)y=x2﹣2ax+3的圖象上,則b、c的大小關(guān)系是b____c(用“>”或“<”號(hào)填空)17.一個(gè)多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個(gè)多邊形的邊數(shù)是______.18.若a是方程的根,則=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CE^AB于E,CD平分DECB,交過(guò)點(diǎn)B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長(zhǎng).20.(6分)如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上.(I)計(jì)算△ABC的邊AC的長(zhǎng)為_(kāi)____.(II)點(diǎn)P、Q分別為邊AB、AC上的動(dòng)點(diǎn),連接PQ、QB.當(dāng)PQ+QB取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線段PQ、QB,并簡(jiǎn)要說(shuō)明點(diǎn)P、Q的位置是如何找到的_____(不要求證明).21.(6分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點(diǎn)在BC邊上,BP=1.①特殊情形:若MP過(guò)點(diǎn)A,NP過(guò)點(diǎn)D,則=.②類(lèi)比探究:如圖2,將∠MPN繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn),使PM交AB邊于點(diǎn)E,PN交AD邊于點(diǎn)F,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),停止旋轉(zhuǎn).在旋轉(zhuǎn)過(guò)程中,的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點(diǎn)E是⊙A上一動(dòng)點(diǎn),CF⊥CE交AD于點(diǎn)F.請(qǐng)直接寫(xiě)出當(dāng)△AEB為直角三角形時(shí)的值.22.(8分)如圖,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫(xiě)作法);(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).23.(8分)關(guān)于x的一元二次方程x2﹣x﹣(m+2)=0有兩個(gè)不相等的實(shí)數(shù)根.求m的取值范圍;若m為符合條件的最小整數(shù),求此方程的根.24.(10分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過(guò)A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.求反比例函數(shù)y=的表達(dá)式;求點(diǎn)B的坐標(biāo);求△OAP的面積.25.(10分)如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).(1)求n的值和拋物線的解析式;(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).26.(12分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過(guò)P作PF⊥AE于F,設(shè)PA=x.(1)求證:△PFA∽△ABE;(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F(xiàn),E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說(shuō)明理由;(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出x滿(mǎn)足的條件:.27.(12分)如圖所示,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長(zhǎng)線交BD于點(diǎn)P.(1)把△ABC繞點(diǎn)A旋轉(zhuǎn)到圖1,BD,CE的關(guān)系是(選填“相等”或“不相等”);簡(jiǎn)要說(shuō)明理由;(2)若AB=3,AD=5,把△ABC繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時(shí),在圖2中作出旋轉(zhuǎn)后的圖形,PD=,簡(jiǎn)要說(shuō)明計(jì)算過(guò)程;(3)在(2)的條件下寫(xiě)出旋轉(zhuǎn)過(guò)程中線段PD的最小值為,最大值為.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
根據(jù)完全平方式的特點(diǎn)求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點(diǎn)睛】本題考查了完全平方公式:a2±2ab+b2,其特點(diǎn)是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項(xiàng)是x和1的平方,那么中間項(xiàng)為加上或減去x和1的乘積的2倍.2、A【解析】
根據(jù)方差的意義可作出判斷.方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學(xué)成績(jī)更穩(wěn)定的是甲;故選A.【點(diǎn)睛】本題考查方差的意義.方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.3、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對(duì)邊相等且平行,②矩形的對(duì)角相等,且都是直角,③矩形的對(duì)角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對(duì)邊分別相等且平行,②平行四邊形的對(duì)角分別相等,③平行四邊形的對(duì)角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對(duì)角線相等,故選C.4、C【解析】
設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質(zhì)得到AB=R,利用圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).5、C【解析】分析:根據(jù)圖象的旋轉(zhuǎn)變化規(guī)律以及二次函數(shù)的平移規(guī)律得出平移后解析式,進(jìn)而求出m的值,由2017÷5=403…2,可知點(diǎn)P(2018,m)在此“波浪線”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.詳解:當(dāng)y=0時(shí),﹣x(x﹣5)=0,解得x1=0,x2=5,則A1(5,0),∴OA1=5,∵將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…;如此進(jìn)行下去,得到一“波浪線”,∴A1A2=A2A3=…=OA1=5,∴拋物線C404的解析式為y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),當(dāng)x=2018時(shí),y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故選C.點(diǎn)睛:此題主要考查了二次函數(shù)的平移規(guī)律,根據(jù)已知得出二次函數(shù)旋轉(zhuǎn)后解析式是解題關(guān)鍵.6、D【解析】
先對(duì)原分式進(jìn)行化簡(jiǎn),再尋找化簡(jiǎn)結(jié)果與已知之間的關(guān)系即可得出答案.【詳解】故選:D.【點(diǎn)睛】本題主要考查分式的化簡(jiǎn)求值,掌握分式的基本性質(zhì)是解題的關(guān)鍵.7、B【解析】
根據(jù)無(wú)理數(shù)的三種形式:①開(kāi)方開(kāi)不盡的數(shù),②無(wú)限不循環(huán)小數(shù),③含有π的數(shù),找出無(wú)理數(shù)的個(gè)數(shù)即可.【詳解】sin30°=,=3,故無(wú)理數(shù)有π,-,故選:B.【點(diǎn)睛】本題考查了無(wú)理數(shù)的知識(shí),解答本題的關(guān)鍵是掌握無(wú)理數(shù)的三種形式:①開(kāi)方開(kāi)不盡的數(shù),②無(wú)限不循環(huán)小數(shù),③含有π的數(shù).8、A【解析】
首先根據(jù)題意畫(huà)出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長(zhǎng)為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過(guò)點(diǎn)O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點(diǎn)睛】本題考查了正多邊形和圓的知識(shí);求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.9、D【解析】
解:,①+②得:3(x+y)=15,則x+y=5,故選D10、A【解析】
先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點(diǎn)睛】考查的是解一元一次不等式組,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關(guān)鍵.11、C【解析】
根據(jù)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),可得答案.【詳解】│-│=,A錯(cuò)誤;│-│=,B錯(cuò)誤;││=,D錯(cuò)誤;││=,故選C.【點(diǎn)睛】本題考查了絕對(duì)值,解題的關(guān)鍵是掌握絕對(duì)值的概念進(jìn)行解題.12、B【解析】
直接利用平均數(shù)的求法進(jìn)而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點(diǎn)睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、C【解析】分析:先根據(jù)一元一次不等式組解出x的取值,再根據(jù)不等式組的整數(shù)解有4個(gè),求出實(shí)數(shù)a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個(gè)整數(shù)解,∴整數(shù)解為:故選C.點(diǎn)睛:考查解一元一次不等式組的整數(shù)解,分別解不等式,寫(xiě)出不等式的解題,根據(jù)不等式整數(shù)解的個(gè)數(shù),確定a的取值范圍.14、k<5且k≠1.【解析】試題解析:∵關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,解得:且故答案為且15、(4,6),(8﹣27,6),(27,6).【解析】
分別取三個(gè)點(diǎn)作為定點(diǎn),然后根據(jù)勾股定理和等腰三角形的兩個(gè)腰相等來(lái)判斷是否存在符合題意的M的坐標(biāo).【詳解】解:當(dāng)M為頂點(diǎn)時(shí),AB長(zhǎng)為底=8,M在DC中點(diǎn)上,所以M的坐標(biāo)為(4,6),當(dāng)B為頂點(diǎn)時(shí),AB長(zhǎng)為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標(biāo)為(8﹣27,6);當(dāng)A為頂點(diǎn)時(shí),AB長(zhǎng)為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標(biāo)為(27,6);綜上所述,M的坐標(biāo)為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點(diǎn)睛】本題主要考查矩形的性質(zhì)、坐標(biāo)與圖形性質(zhì),解題關(guān)鍵是根據(jù)對(duì)等腰三角形性質(zhì)的掌握和勾股定理的應(yīng)用.16、<【解析】試題分析:將二次函數(shù)y=x2-2ax+3轉(zhuǎn)換成y=(x-a)2-a2+3,則它的對(duì)稱(chēng)軸是x=a,拋物線開(kāi)口向上,所以在對(duì)稱(chēng)軸右邊y隨著x的增大而增大,點(diǎn)A點(diǎn)B均在對(duì)稱(chēng)軸右邊且a+1<a+2,所以b<c.17、7【解析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:18、1【解析】
利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計(jì)算.【詳解】∵a是方程的根,
∴3a2-a-2=0,
∴3a2-a=2,
∴==5-2×2=1.
故答案為:1.【點(diǎn)睛】此題考查一元二次方程的解,解題關(guān)鍵在于掌握能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)解析;(2)1.【解析】試題分析:(1)根據(jù)垂直的定義可得∠CEB=90°,然后根據(jù)角平分線的性質(zhì)和等腰三角形的性質(zhì),判斷出∠1=∠D,從而根據(jù)平行線的判定得到CE∥BD,根據(jù)平行線的性質(zhì)得∠DBA=∠CEB,由此可根據(jù)切線的判定得證結(jié)果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點(diǎn):切線的判定,相似三角形,勾股定理20、作線段AB關(guān)于AC的對(duì)稱(chēng)線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最小【解析】
(1)利用勾股定理計(jì)算即可;(2)作線段AB關(guān)于AC的對(duì)稱(chēng)線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。驹斀狻拷猓海?)AC==.故答案為.(2)作線段AB關(guān)于AC的對(duì)稱(chēng)線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。?/p>
故答案為作線段AB關(guān)于AC的對(duì)稱(chēng)線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。军c(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),勾股定理,軸對(duì)稱(chēng)-最短問(wèn)題,垂線段最短等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱(chēng),根據(jù)垂線段最短解決最短問(wèn)題,屬于中考??碱}型.21、(1)①特殊情形:;②類(lèi)比探究:是定值,理由見(jiàn)解析;(2)或【解析】
(1)證明,即可求解;(2)點(diǎn)E與點(diǎn)B重合時(shí),四邊形EBFA為矩形,即可求解;(3)分時(shí)、時(shí),兩種情況分別求解即可.【詳解】解:(1),,故答案為;(2)點(diǎn)E與點(diǎn)B重合時(shí),四邊形EBFA為矩形,則為定值;(3)①當(dāng)時(shí),如圖3,過(guò)點(diǎn)E、F分別作直線BC的垂線交于點(diǎn)G,H,由(1)知:,,同理,.則,則;②當(dāng)時(shí),如圖4,,則,,則,,則,故或.【點(diǎn)睛】本題考查的圓知識(shí)的綜合運(yùn)用,涉及到解直角三角形的基本知識(shí),其中(3),要注意分類(lèi)求解,避免遺漏.22、(1)作圖見(jiàn)解析(2)∠BDC=72°【解析】解:(1)作圖如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分線,∴∠ABD=∠ABC=×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根據(jù)角平分線的作法利用直尺和圓規(guī)作出∠ABC的平分線:①以點(diǎn)B為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交AB、BC于點(diǎn)E、F;②分別以點(diǎn)E、F為圓心,大于EF為半徑畫(huà)圓,兩圓相較于點(diǎn)G,連接BG交AC于點(diǎn)D.(2)先根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和定理求出∠A的度數(shù),再由角平分線的性質(zhì)得出∠ABD的度數(shù),再根據(jù)三角形外角的性質(zhì)得出∠BDC的度數(shù)即可.23、(1)m>;(2)x1=0,x2=1.【解析】
解答本題的關(guān)鍵是是掌握好一元二次方程的根的判別式.(1)求出△=5+4m>0即可求出m的取值范圍;(2)因?yàn)閙=﹣1為符合條件的最小整數(shù),把m=﹣1代入原方程求解即可.【詳解】解:(1)△=1+4(m+2)=9+4m>0∴.(2)∵為符合條件的最小整數(shù),∴m=﹣2.∴原方程變?yōu)椤鄕1=0,x2=1.考點(diǎn):1.解一元二次方程;2.根的判別式.24、(1)反比例函數(shù)解析式為y=;(2)點(diǎn)B的坐標(biāo)為(9,3);(3)△OAP的面積=1.【解析】
(1)將點(diǎn)A的坐標(biāo)代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點(diǎn)B的坐標(biāo);(3)先根據(jù)點(diǎn)B坐標(biāo)得出OB所在直線解析式,從而求得直線與雙曲線交點(diǎn)P的坐標(biāo),再利用割補(bǔ)法求解可得.【詳解】(1)將點(diǎn)A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點(diǎn)B的坐標(biāo)為(9,3);(3)∵點(diǎn)B坐標(biāo)為(9,3),∴OB所在直線解析式為y=x,由可得點(diǎn)P坐標(biāo)為(6,2),(負(fù)值舍去),過(guò)點(diǎn)P作PD⊥x軸,延長(zhǎng)DP交AB于點(diǎn)E,則點(diǎn)E坐標(biāo)為(6,3),∴AE=2、PE=1、PD=2,則△OAP的面積=×(2+6)×3﹣×6×2﹣×2×1=1.【點(diǎn)睛】本題考查了反比例函數(shù)與幾何圖形綜合,熟練掌握反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、正確添加輔助線是解題的關(guān)鍵.25、(1)n=2;y=x2﹣x﹣1;(2)p=;當(dāng)t=2時(shí),p有最大值;(3)6個(gè),或;【解析】
(1)把點(diǎn)B的坐標(biāo)代入直線解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;
(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長(zhǎng)度,利用勾股定理列式求出AB的長(zhǎng),然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長(zhǎng)公式表示出p,利用直線和拋物線的解析式表示DE的長(zhǎng),整理即可得到P與t的關(guān)系式,再利用二次函數(shù)的最值問(wèn)題解答;
(3)根據(jù)逆時(shí)針旋轉(zhuǎn)角為90°可得A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時(shí),B1A1∥AB,根據(jù)圖3、圖4兩種情形即可解決.【詳解】解:(1)∵直線l:y=x+m經(jīng)過(guò)點(diǎn)B(0,﹣1),∴m=﹣1,∴直線l的解析式為y=x﹣1,∵直線l:y=x﹣1經(jīng)過(guò)點(diǎn)C(4,n),∴n=×4﹣1=2,∵拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),∴,解得,∴拋物線的解析式為y=x2﹣x﹣1;(2)令y=0,則x﹣1=0,解得x=,∴點(diǎn)A的坐標(biāo)為(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y軸,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE?cos∠DEF=DE?=DE,DF=DE?sin∠DEF=DE?=DE,∴p=2(DF+EF)=2(+)DE=DE,∵點(diǎn)D的橫坐標(biāo)為t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴當(dāng)t=2時(shí),p有最大值.(3)“落點(diǎn)”的個(gè)數(shù)有6個(gè),如圖1,圖2中各有2個(gè),圖3,圖4各有一個(gè)所示.如圖3中,設(shè)A1的橫坐標(biāo)為m,則O1的橫坐標(biāo)為m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如圖4中,設(shè)A1的橫坐標(biāo)為m,則B1的橫坐標(biāo)為m+,B1的縱坐標(biāo)比例A1的縱坐標(biāo)大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo)為或【點(diǎn)睛】本題是二次函數(shù)綜合題型,主要考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求二次函數(shù)解析式,銳角三角函數(shù),長(zhǎng)方形的周長(zhǎng)公式,以及二次函數(shù)的最值問(wèn)題,本題難點(diǎn)在于(3)根據(jù)旋轉(zhuǎn)角是90°判斷出A1O1∥y軸時(shí),B1O1∥x軸,旋轉(zhuǎn)角是180°判斷出A1O1∥x軸時(shí),B1A1∥AB,解題時(shí)注意要分情況討論.26、(1)證明見(jiàn)解析;(2)3或.(3)或0<【解析】
(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件可以證明兩個(gè)角對(duì)應(yīng)相等,從而證明三角形相似;
(2)由于對(duì)應(yīng)關(guān)系不確定,所以應(yīng)針對(duì)不同的對(duì)應(yīng)關(guān)系分情況考慮:當(dāng)時(shí),則得到四邊形為矩形,從而求得的值;當(dāng)時(shí),再結(jié)合(1)中的結(jié)論,得到等腰.再根據(jù)等腰三角形的三線合一得到是的中點(diǎn),運(yùn)用勾股定理和相似三角形的性質(zhì)進(jìn)行求解.
(3)此題首先應(yīng)針對(duì)點(diǎn)的位置分為兩種大情況:①與AE相切,②與線段只有一個(gè)公共點(diǎn),不一定必須相切,只要保證和線段只有一個(gè)公共點(diǎn)即可.故求得相切時(shí)的情況和相交,但其中一個(gè)交點(diǎn)在線段外的情況即是的取值范圍.【詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當(dāng)△EFP∽△ABE,且∠PEF=∠EAB時(shí),則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當(dāng)△PFE∽△ABE,且∠PEF=∠AEB時(shí),∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點(diǎn)F為AE的中點(diǎn),即∴滿(mǎn)足條件的x的值為3或(3)或【點(diǎn)睛】?jī)山M角對(duì)應(yīng)相等,兩三角形相似.27、(1)BD,CE的關(guān)系是相等;(2)或;(3)1,1【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑工程施工合同合同風(fēng)險(xiǎn)預(yù)警與防范措施協(xié)議
- 2025年中國(guó)兩性霉素B行業(yè)市場(chǎng)全景監(jiān)測(cè)及投資策略研究報(bào)告
- 上海bim合同范本
- 農(nóng)場(chǎng)自建旅館合同范本
- 代理退稅合同范本
- 2025年度高新技術(shù)產(chǎn)業(yè)公司總經(jīng)理專(zhuān)項(xiàng)聘用合同
- 養(yǎng)殖競(jìng)標(biāo)合同范本
- 駕校教練車(chē)承包合同范本
- 2025年陶瓷化工填料項(xiàng)目可行性研究報(bào)告
- 第一章:公共政策理論模型
- 中藥審核處方的內(nèi)容(二)
- (完整)金正昆商務(wù)禮儀答案
- RB/T 101-2013能源管理體系電子信息企業(yè)認(rèn)證要求
- GB/T 10205-2009磷酸一銨、磷酸二銨
- 公司財(cái)務(wù)制度及流程
- 高支模專(zhuān)項(xiàng)施工方案(專(zhuān)家論證)
- 《物流與供應(yīng)鏈管理-新商業(yè)、新鏈接、新物流》配套教學(xué)課件
- 房地產(chǎn)標(biāo)準(zhǔn)踩盤(pán)表格模板
- 物聯(lián)網(wǎng)項(xiàng)目實(shí)施進(jìn)度計(jì)劃表
- MDD指令附錄一 基本要求檢查表2013版
評(píng)論
0/150
提交評(píng)論