2025屆山東省博興縣高一數(shù)學第二學期期末教學質量檢測模擬試題含解析_第1頁
2025屆山東省博興縣高一數(shù)學第二學期期末教學質量檢測模擬試題含解析_第2頁
2025屆山東省博興縣高一數(shù)學第二學期期末教學質量檢測模擬試題含解析_第3頁
2025屆山東省博興縣高一數(shù)學第二學期期末教學質量檢測模擬試題含解析_第4頁
2025屆山東省博興縣高一數(shù)學第二學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省博興縣高一數(shù)學第二學期期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線的傾斜角為,在軸上的截距為2,則此直線方程為()A. B. C. D.2.若樣本的平均數(shù)為10,其方差為2,則對于樣本的下列結論正確的是A.平均數(shù)為20,方差為8 B.平均數(shù)為20,方差為10C.平均數(shù)為21,方差為8 D.平均數(shù)為21,方差為103.己知的周長為,內切圓的半徑為,,則的值為()A. B. C. D.4.已知向量,,若對任意的,恒成立,則角的取值范圍是()A. B.C. D.5.已知,,,則的取值范圍是()A. B. C. D.6.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或 C.或 D.或7.如圖,已知矩形中,,,該矩形所在的平面內一點滿足,記,,,則()A.存在點,使得 B.存在點,使得C.對任意的點,有 D.對任意的點,有8.設x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]9.執(zhí)行如圖所示的程序框圖,則輸出的值為()A.7 B.6 C.5 D.410.已知等差數(shù)列的公差為2,前項和為,且,則的值為A.11 B.12 C.13 D.14二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則函數(shù)的最小值是___.12.在平面直角坐標系中,圓的方程為.若直線上存在一點,使過所作的圓的兩條切線相互垂直,則實數(shù)的取值范圍是______.13.函數(shù)y=tan14.若,則__________.15.已知為數(shù)列{an}的前n項和,且,,則{an}的首項的所有可能值為______16.等差數(shù)列前9項的和等于前4項的和.若,則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.等差數(shù)列的各項均為正數(shù),,的前項和為,為等比數(shù)列,,且.(1)求與;(2)求數(shù)列的前項和.18.某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查.(I)求應從小學、中學、大學中分別抽取的學校數(shù)目.(II)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,(1)列出所有可能的抽取結果;(2)求抽取的2所學校均為小學的概率.19.如圖,在平面直角坐標系中,點,,銳角的終邊與單位圓O交于點P.(Ⅰ)當時,求的值;(Ⅱ)在軸上是否存在定點M,使得恒成立?若存在,求出點M坐標;若不存在,說明理由.20.如圖,正三棱柱的各棱長均為,為棱的中點,求異面直線與所成角的余弦值.21.已知數(shù)列滿足,且(,且).(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式(3)設數(shù)列的前項和,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由題意可得直線的斜率和截距,由斜截式可得答案.【詳解】解:∵直線的傾斜角為45°,∴直線的斜率為k=tan45°=1,由斜截式可得方程為:y=x+2,故選:D.【點睛】本題考查直線的斜截式方程,屬基礎題.2、A【解析】

利用和差積的平均數(shù)和方差公式解答.【詳解】由題得樣本的平均數(shù)為,方差為.故選A【點睛】本題主要考查平均數(shù)和方差的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、C【解析】

根據(jù)的周長為,內切圓的半徑為,求得,再利用正弦定理,得到,然后代入余弦定理,化簡得到求解.【詳解】因為的周長為,內切圓的半徑為,所以,又因為,所以.由余弦定理得:,,所以,所以,即,因為A為內角,所以,所以.故選:C【點睛】本題主要考查了正弦定理和余弦定理的應用,還考查了運算求解的能力,屬于中檔題.4、A【解析】

利用數(shù)量積運算可將不等式化簡為,根據(jù)恒成立條件可得不等式組,利用三角函數(shù)知識分別求解兩個不等式,取交集得到結果.【詳解】當時,恒成立,則當時,即,,解得:,當時,即,,解得:,在時恒成立可得:本題正確選項:【點睛】本題考查三角函數(shù)中的恒成立問題的求解,關鍵是能夠根據(jù)數(shù)量積將恒成立不等式轉化為兩個三角不等式的求解問題,利用輔助角公式將問題轉化為根據(jù)正弦型函數(shù)的值域求解角的范圍的問題.5、D【解析】

根據(jù)所給等式,用表示出,代入中化簡,令并構造函數(shù),結合函數(shù)的圖像與性質即可求得的取值范圍.【詳解】因為,所以,由解得,因為,所以,則由可得,令,.所以畫出,的圖像如下圖所示:由圖像可知,函數(shù)在內的值域為,即的取值范圍為,故選:D.【點睛】本題考查了由等式求整式的取值范圍問題,打勾函數(shù)的圖像與性質應用,注意若使用基本不等式,注意等號成立條件及自變量取值范圍影響,屬于中檔題.6、C【解析】

由題意可知:點在反射光線上.設反射光線所在的直線方程為:,利用直線與圓的相切的性質即可得出.【詳解】由題意可知:點在反射光線上.設反射光線所在的直線方程為:,即.由相切的性質可得:,化為:,解得或.故選.【點睛】本題考查了直線與圓相切的性質、點到直線的距離公式、光線反射的性質,考查了推理能力與計算能力,屬于中檔題.7、C【解析】以為原點,以所在直線為軸、軸建立坐標系,則,,且在矩形內,可設,,,,,,錯誤,正確,,,錯誤,錯誤,故選C.【方法點睛】本題主要考查平面向量數(shù)量積公式的坐標表示,屬于中檔題.平面向量數(shù)量積公式有兩種形式,一是幾何形式,,二是坐標形式,(求最值問題與求范圍問題往往運用坐標形式),主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).8、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標函數(shù)即,易知直線在軸上的截距最大時,目標函數(shù)取得最小值;在軸上的截距最小時,目標函數(shù)取得最大值,即在點處取得最小值,為;在點處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點睛】線性規(guī)劃的實質是把代數(shù)問題幾何化,即運用數(shù)形結合的思想解題.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點處或邊界上取得.9、C【解析】

由流程圖循環(huán)4次,輸出,即可得出結果..【詳解】初始值,,是,第一次循環(huán):,,是,第二次循環(huán):,,是,第三次循環(huán):,,是,第四次循環(huán):S,,否,輸出.故選C.【點睛】本題考查程序框圖的循環(huán),分析框圖的作用,逐步執(zhí)行即可,屬于基礎題.10、C【解析】

利用等差數(shù)列通項公式及前n項和公式,即可得到結果.【詳解】∵等差數(shù)列的公差為2,且,∴∴∴.故選:C【點睛】本題考查了等差數(shù)列的通項公式及前n項和公式,考查計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】因為,所以,函數(shù),當且僅當,即時等號成立.點睛:本題考查了基本不等式的應用,屬于基礎題.在用基本不等式時,注意"一正二定三相等"這三個條件,關鍵是找定值,在本題中,將拆成,湊成定值,再用基本不等式求出最小值.12、【解析】試題分析:記兩個切點為,則由于,因此四邊形是正方形,,圓標準方程為,,,于是圓心直線的距離不大于,,解得.考點:直線和圓的位置關系.13、{【解析】

解方程12【詳解】由題得12x+故答案為{x|x≠2kπ+【點睛】本題主要考查正切型函數(shù)的定義域的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.14、;【解析】

把分子的1換成,然后弦化切,代入計算.【詳解】.故答案為-1.【點睛】本題考查三角函數(shù)的化簡求值.解題關鍵是“1”的代換,即,然后弦化切.15、【解析】

根據(jù)題意,化簡得,利用式相加,得到,進而得到,即可求解結果.【詳解】因為,所以,所以,將以上各式相加,得,又,所以,解得或.【點睛】本題主要考查了數(shù)列的遞推關系式應用,其中解答中利用數(shù)列的遞推關系式,得到關于數(shù)列首項的方程求解是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.16、10【解析】

根據(jù)等差數(shù)列的前n項和公式可得,結合等差數(shù)列的性質即可求得k的值.【詳解】因為,且所以由等差數(shù)列性質可知因為所以則根據(jù)等差數(shù)列性質可知可得【點睛】本題考查了等差數(shù)列的前n項和公式,等差數(shù)列性質的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】試題分析:(1)的公差為,的公比為,利用等比數(shù)列的通項公式和等差數(shù)列的前項和公式,由列出關于的方程組,解出的值,從而得到與的表達式.(2)根據(jù)數(shù)列的特點,可用錯位相減法求它的前項和,由(1)的結果知,兩邊同乘以2得由(1)(2)兩式兩邊分別相減,可轉化為等比數(shù)列的求和問題解決.試題解析:(1)設的公差為,的公比為,則為正整數(shù),,依題意有,即,解得或者(舍去),故.4分(2).6分,,兩式相減得8分,所以12分考點:1、等差數(shù)列和等比數(shù)列;2、錯位相減法求特數(shù)列的前項和.18、(1)3,2,1(2)【解析】(1)從小學、中學、大學中分別抽取的學校數(shù)目為3、2、1.(2)①在抽取到的6所學校中,3所小學分別記為A1,A2,A3,2所中學分別記為A4,A5,大學記為A6,則抽取2所學校的所有可能結果為{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15種.②從6所學校中抽取的2所學校均為小學(記為事件B)的所有可能結果為{A1,A2},{A1,A3},{A2,A3},共3種.所以P(B)=315=119、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)設點,求得向量的坐標,根據(jù)向量的數(shù)量積的運算,求得,即可求得答案.(Ⅱ)設M點的坐標為,把恒成立問題轉化為恒成立,列出方程組,即可求解.【詳解】(Ⅰ),,(Ⅱ)設M點的坐標為,則,,,.【點睛】本題主要考查了向量的坐標運算,以及向量的數(shù)量積的應用和恒成立問題的求解,其中解答中合理利用向量的坐標運算及向量的數(shù)量積的運算,以及轉化等式的恒成立問題,列出相應的方程組是解答的關鍵,著重考查了推理與運算能力.20、【解析】

作交于,則為異面直線與所成角,在中求出各邊的長度,根據(jù)余弦定理,得到的余弦值,即為答案.【詳解】作交于,則為異面直線與所成角,因為為中點,所以是的一條中位線,所以,因為正三棱柱,所以面,而面,所以所以在中,,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論