重慶市部分區(qū)縣2025屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第1頁
重慶市部分區(qū)縣2025屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第2頁
重慶市部分區(qū)縣2025屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第3頁
重慶市部分區(qū)縣2025屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第4頁
重慶市部分區(qū)縣2025屆高一數(shù)學第二學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市部分區(qū)縣2025屆高一數(shù)學第二學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若對于恒成立,則實數(shù)的取值范圍為()A. B. C. D.2.已知三棱錐P-ABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為的正三角形,E,F(xiàn)分別是PA,AB的中點,∠CEF=90°.則球O的體積為()A. B. C. D.3.為等差數(shù)列的前項和,且,.記,其中表示不超過的最大整數(shù),如,.數(shù)列的前項和為()A. B. C. D.4.已知雙曲線的焦點與橢圓的焦點相同,則雙曲線的離心率為()A. B. C. D.25.在某種新型材料的研制中,實驗人員獲得了下列一組實驗數(shù)據(jù):現(xiàn)準備用下列四個函數(shù)中的一個近似地表示這些數(shù)據(jù)的規(guī)律,其中最接近的一個是()345.156.1264.04187.51218.01A. B. C. D.6.已知組數(shù)據(jù),,…,的平均數(shù)為2,方差為5,則數(shù)據(jù)2+1,2+1,…,2+1的平均數(shù)與方差分別為()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=217.已知,則下列不等式一定成立的是()A. B. C. D.8.設集合,集合,則()A. B. C. D.9.如圖,在中,面,,是的中點,則圖中直角三角形的個數(shù)是()A.5 B.6 C.7 D.810.在中,角所對的邊分別為,已知,則最大角的余弦值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.過點直線與軸的正半軸,軸的正半軸分別交于、兩點,為坐標原點,當最小時,直線的一般方程為______.12.從分別寫有1,2,3,4,5的五張卡片中,任取兩張,這兩張卡片上的數(shù)字之差的絕對值等于1的概率為________.13.如圖,在正方體中,有以下結論:①平面;②平面;③;④異面直線與所成的角為.則其中正確結論的序號是____(寫出所有正確結論的序號).14.底面邊長為,高為的直三棱柱形容器內放置一氣球,使氣球充氣且盡可能的膨脹(保持球的形狀),則氣球表面積的最大值為_______.15.已知球的一個內接四面體中,,過球心,若該四面體的體積為,且,則球的表面積的最小值為_________.16.設,向量,,若,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,經(jīng)過村莊有兩條夾角為的公路,根據(jù)規(guī)劃要在兩條公路之間的區(qū)域內修建一工廠,分別在兩條公路邊上建兩個倉庫(異于村莊),要求(單位:千米),記.(1)將用含的關系式表示出來;(2)如何設計(即為多長時),使得工廠產(chǎn)生的噪聲對居民影響最?。垂S與村莊的距離最大)?18.已知△ABC內角A,B,C的對邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.19.的內角,,的對邊分別為,,,為邊上一點,為的角平分線,,.(1)求的值:(2)求面積的最大值.20.已知角、的頂點在平面直角坐標系的原點,始邊與軸正半軸重合,且角的終邊與單位圓(圓心在原點,半徑為1的圓)的交點位于第二象限,角的終邊和單位圓的交點位于第三象限,若點的橫坐標為,點的縱坐標為.(1)求、的值;(2)若,求的值.(結果用反三角函數(shù)值表示)21.某高速公路隧道內設雙行線公路,其截面由一段圓弧和一個長方形的三邊構成(如圖所示).已知隧道總寬度為,行車道總寬度為,側墻面高,為,弧頂高為.()建立適當?shù)闹苯亲鴺讼担髨A弧所在的圓的方程.()為保證安全,要求行駛車輛頂部(設為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請計算車輛通過隧道的限制高度是多少.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

首先設,將題意轉化為,即可,再分類討論求出,解不等式組即可.【詳解】,恒成立,等價于,恒成立.令,對稱軸為.即等價于,即可.當時,得到,解得:.當時,得到,解得:.當時,得到,解得:.綜上所述:.故選:A【點睛】本題主要考查二次不等式的恒成立問題,同時考查了二次函數(shù)的最值問題,分類討論是解題的關鍵,屬于中檔題.2、D【解析】

計算可知三棱錐P-ABC的三條側棱互相垂直,可得球O是以PA為棱的正方體的外接球,球的直徑,即可求出球O的體積.【詳解】在△PAC中,設,,,,因為點E,F(xiàn)分別是PA,AB的中點,所以,在△PAC中,,在△EAC中,,整理得,因為△ABC是邊長為的正三角形,所以,又因為∠CEF=90°,所以,所以,所以.又因為△ABC是邊長為的正三角形,所以PA,PB,PC兩兩垂直,則球O是以PA為棱的正方體的外接球,則球的直徑,所以外接球O的體積為.故選D.【點睛】本題考查了三棱錐的外接球,考查了學生的空間想象能力,屬于中檔題.3、D【解析】

利用等差數(shù)列的通項公式與求和公式可得,再利用,可得,,.即可得出.【詳解】解:為等差數(shù)列的前項和,且,,.可得,則公差.,,則,,,.數(shù)列的前項和為:.故選:.【點睛】本題考查了等差數(shù)列的通項公式與求和公式、對數(shù)運算性質、取整函數(shù),考查了推理能力與計算能力,屬于中檔題.4、B【解析】根據(jù)橢圓可以知焦點為,離心率,故選B.5、A【解析】

由表中的數(shù)據(jù)分析得:自變量基本上是等速增加,相應的函數(shù)值增加的速度越來越快,結合基本初等函數(shù)的單調性,即可得出答案.【詳解】對于A:函數(shù)在是單調遞增,且函數(shù)值增加速度越來越快,將自變量代入,相應的函數(shù)值,比較接近,符合題意,所以正確;對于B:函數(shù)值隨著自變量增加是等速的,不合題意;對于C:函數(shù)值隨著自變量的增加比線性函數(shù)還緩慢,不合題意;選項D:函數(shù)值隨著自變量增加反而減少,不合題意.故選:A.【點睛】本題考查函數(shù)模型的選擇和應用問題,解題的關鍵是掌握各種基本初等函數(shù),如一次函數(shù),二次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)的圖像與性質,屬于基礎題.6、C【解析】

根據(jù)題意,利用數(shù)據(jù)的平均數(shù)和方差的性質分析可得答案.【詳解】根據(jù)題意,數(shù)據(jù),,,的平均數(shù)為2,方差為5,則數(shù)據(jù),,,的平均數(shù),其方差;故選.【點睛】本題考查數(shù)據(jù)的平均數(shù)、方差的計算,關鍵是掌握數(shù)據(jù)的平均數(shù)、方差的計算公式,屬于基礎題.7、C【解析】試題分析:若,那么,A錯;,B錯;是單調遞減函數(shù)當時,所以,C.正確;是減函數(shù),所以,故選C.考點:不等式8、B【解析】

已知集合A,B,取交集即可得到答案.【詳解】集合,集合,則故選B【點睛】本題考查集合的交集運算,屬于簡單題.9、C【解析】試題分析:因為面,所以,則三角形為直角三角形,因為,所以,所以三角形是直角三角形,易證,所以面,即,則三角形為直角三角形,即共有7個直角三角形;故選C.考點:空間中垂直關系的轉化.10、B【解析】

由邊之間的比例關系,設出三邊長,利用余弦定理可求.【詳解】因為,所以c邊所對角最大,設,由余弦定理得,故選B.【點睛】本題考查余弦定理,計算求解能力,屬于基本題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設直線的截距式方程為,利用該直線過可得,再利用基本不等式可求何時即取最小值,從而得到相應的直線方程.【詳解】設直線的截距式方程為,其中且.因為直線過,故.所以,由基本不等式可知,當且僅當時等號成立,故當取最小值時,直線方程為:.填.【點睛】直線方程有五種形式,常用的形式有點斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設所給的條件選擇合適的方程的形式,特別地,如果考慮的問題是與直線、坐標軸圍成的直角三角形有關的問題,可考慮利用截距式.12、【解析】

基本事件總數(shù)n,利用列舉法求出這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有4種情況,由此能求出這兩張卡片上的數(shù)字之差的絕對值等于1的概率.【詳解】從分別寫有1,2,3,4,5的五張卡片中,任取兩張,基本事件總數(shù)n,這兩張卡片上的數(shù)字之差的絕對值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4種情況,∴這兩張卡片上的數(shù)字之差的絕對值等于1的概率為p.故答案為.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.13、①③【解析】

①:利用線面平行的判定定理可以直接判斷是正確的結論;②:舉反例可以判斷出該結論是錯誤的;③:可以利用線面垂直的判定定理,得到線面垂直,再利用線面垂直的性質定理可以判斷是正確的結論;④:可以通過,可以判斷出異面直線與所成的角為,即本結論是錯誤的,最后選出正確的結論序號.【詳解】①:平面,平面平面,故本結論是正確的;②:在正方形中,,顯然不垂直,而,所以不互相垂直,要是平面,則必有互相垂直,顯然是不可能的,故本結論是錯誤的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本結論是正確的;④:因為,所以異面直線與所成的角為,在正方形中,,故本結論是錯誤的,因此正確結論的序號是①③.【點睛】本題考查了線面平行的判定定理、線面垂直的判定定理、性質定理,考查了異面直線所成的角、線面垂直的性質.14、【解析】由題意,氣球充氣且盡可能地膨脹時,氣球的半徑為底面三角形內切圓的半徑

∵底面三角形的邊長分別為,∴底面三角形的邊長為直角三角形,利用等面積可求得∴氣球表面積為4π.15、【解析】

求出面積的最大值,結合棱錐的體積可得到平面距離的最小值,進一步求得球的半徑的最小值得答案.【詳解】解:在中,由,且,

得,得.

當且僅當時,有最大值1.

過球心,且四面體的體積為1,

∴三棱錐的體積為.

則到平面的距離為.

此時的外接圓的半徑為,則球的半徑的最小值為,

∴球O的表面積的最小值為.

故答案為:.【點睛】本題考查多面體外接球表面積最值的求法,考查邏輯思維能力與推理運算能力,考查空間想象能力,是中檔題.16、【解析】從題設可得,即,應填答案.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)根據(jù)正弦定理,得到,進而可求出結果;(2)由余弦定理,得到,結合題中數(shù)據(jù),得到,取最大值時,噪聲對居民影響最小,即可得出結果.【詳解】(1)因為,在中,由正弦定理可得:,所以,;(2)由題意,由余弦定理可得:,又由(1)可得,所以,當且僅當,即時,取得最大值,工廠產(chǎn)生的噪聲對居民影響最小,此時.【點睛】本題主要考查正弦定理與余弦定理的應用,熟記正弦定理與余弦定理即可,屬于??碱}型.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可求解;方法2:由正弦定理可得,,并將其代入可得,然后再化簡,根據(jù)正弦函數(shù)的圖象和性質即可求得面積的最大值.【詳解】解:(I)因為,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以當且僅當時取等號,所以△ABC面積的最大值為方法2:因為,所以,,所以,所以,當且僅當,即,當時取等號.所以△ABC面積的最大值為.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應用,余弦定理,基本不等式,三角形的面積公式,正弦函數(shù)的圖象和性質在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.19、(1)(2)3【解析】

(1)由,,根據(jù)三角形面積公式可知,,再根據(jù)角平分線的定義可知,到,的距離相等,所以,即可求出;(2)先根據(jù)(1)可得,,由平方關系得,再根據(jù)三角形的面積公式,可化簡得,然后根據(jù)基本不等式即可求出面積的最大值.【詳解】(1)如圖所示:因為,所以.又因為為的角平分線,所以到,的距離相等,所以所以.(2)由(1)及余弦定理得:所以,又因為所以,所以又因為且,故所以,當且僅當即時取等號.所以面積的最大值為.【點睛】本題主要考查正余弦定理在解三角形中的應用,三角形面積公式的應用,以及利用基本不等式求最值,意在考查學生的轉化能力和數(shù)學運算能力,屬于中檔題.20、(1);(2)【解析】

(1)可根據(jù)單位圓定義求出,再由二倍角正弦公式即可求解;(2)先求出由可求得,結合反三角函數(shù)即可求得【詳解】(1)由題可知:,,,;(2)由,,又,【點睛】本題考查單位圓的定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論