2024屆廣東省廣州市增城中學(xué)高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
2024屆廣東省廣州市增城中學(xué)高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
2024屆廣東省廣州市增城中學(xué)高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
2024屆廣東省廣州市增城中學(xué)高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
2024屆廣東省廣州市增城中學(xué)高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省廣州市增城中學(xué)高一下數(shù)學(xué)期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)分別為、、人,該校為了了解本校學(xué)生視力情況,現(xiàn)用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為的樣本,則應(yīng)從高三年級抽取的學(xué)生人數(shù)為()A. B. C. D.2.設(shè)等比數(shù)列的前項和為,若,,則()A.14 B.18 C.36 D.603.甲、乙兩人在相同的條件下各打靶6次,每次打靶的情況如圖所示(虛線為甲的折線圖),則以下說法錯誤的是()A.甲、乙兩人打靶的平均環(huán)數(shù)相等B.甲的環(huán)數(shù)的中位數(shù)比乙的大C.甲的環(huán)數(shù)的眾數(shù)比乙的大D.甲打靶的成績比乙的更穩(wěn)定4.已知圓,圓,分別為圓上的點,為軸上的動點,則的最小值為()A. B. C. D.5.設(shè)的內(nèi)角A,B,C所對的邊分別為a,b,c.若,,則角()A. B. C. D.6.下列說法正確的是()A.函數(shù)的最小值為 B.函數(shù)的最小值為C.函數(shù)的最小值為 D.函數(shù)的最小值為7.設(shè)A,B是任意事件,下列哪一個關(guān)系式正確的()A.A+B=A B.ABA C.A+AB=A D.A8.的弧度數(shù)是()A. B. C. D.9.若是等差數(shù)列,首項,,,則使前n項和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.403410.是邊AB上的中點,記,,則向量()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列{an}的公差為d,且d≠0,其前n項和為Sn,若滿足a1,a2,a5成等比數(shù)列,且S3=9,則d=_____,Sn=_____.12.在直角坐標(biāo)系中,直線與直線都經(jīng)過點,若,則直線的一般方程是_____.13.已知向量,,且,則______.14.若實數(shù)滿足,,則__________.15.空間兩點,間的距離為_____.16.在平面直角坐標(biāo)系xOy中,雙曲線的右支與焦點為F的拋物線交于A,B兩點若,則該雙曲線的漸近線方程為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,,分別為棱,上的三等份點,,.(1)求證:平面;(2)若,平面,求證:平面平面.18.等差數(shù)列中,公差,,.(1)求的通項公式;(2)若,求數(shù)列的前項和.19.為了解學(xué)生的學(xué)習(xí)情況,某學(xué)校在一次考試中隨機(jī)抽取了20名學(xué)生的成績,分成[50,60),[60,70),[70,80),[80,90),[90,100]五組,繪制了如圖所示頻率分布直方圖.求:(Ⅰ)圖中m的值;(II)估計全年級本次考試的平均分;(III)若從樣本中隨機(jī)抽取分?jǐn)?shù)在[80,100]的學(xué)生兩名,求所抽取兩人至少有一人分?jǐn)?shù)不低于90分的概率.20.為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.21.如圖,在以、、、、、為頂點的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

設(shè)從高三年級抽取的學(xué)生人數(shù)為,根據(jù)總體中和樣本中高三年級所占的比例相等列等式求出的值.【詳解】設(shè)從高三年級抽取的學(xué)生人數(shù)為,由題意可得,解得,因此,應(yīng)從高三年級抽取的學(xué)生人數(shù)為,故選:C.【點睛】本題考查分層抽樣中的相關(guān)計算,解題時要利用總體中每層的抽樣比例相等或者總體或樣本中每層的所占的比相等來列等式求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.2、A【解析】

由已知結(jié)合等比數(shù)列的求和公式可求,,q2,然后整體代入到求和公式即可求.【詳解】∵等比數(shù)列{an}中,S2=2,S4=6,∴q≠1,則,聯(lián)立可得,2,q2=2,S62×(1﹣23)=1.故選:A.【點睛】本題主要考查了等比數(shù)列的求和公式的簡單應(yīng)用,考查了整體代入的運(yùn)算技巧,屬于基礎(chǔ)題.3、C【解析】甲:8,6,8,6,9,8,平均數(shù)為7.5,中位數(shù)為8,眾數(shù)為8;乙:4,6,8,7,10,10,平均數(shù)為7.5,中位數(shù)7.5,眾數(shù)為10;所以可知錯誤的是C。故選C。4、D【解析】

求出圓關(guān)于軸的對稱圓的圓心坐標(biāo)A,以及半徑,然后求解圓A與圓的圓心距減去兩個圓的半徑和,即可求得的最小值,得到答案.【詳解】如圖所示,圓關(guān)于軸的對稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,,半徑為3,由圖象可知,當(dāng)三點共線時,取得最小值,且的最小值為圓與圓的圓心距減去兩個圓的半徑之和,即,故選D.【點睛】本題主要考查了圓的對稱圓的方程的求解,以及兩個圓的位置關(guān)系的應(yīng)用,其中解答中合理利用兩個圓的位置關(guān)系是解答本題的關(guān)鍵,著重考查了數(shù)形結(jié)合法,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.5、B【解析】

根據(jù)正弦定理,可得,進(jìn)而可求,再利用余弦定理,即可得結(jié)果.【詳解】,∴由正弦定理,可得3b=5a,,,,,故選:B.【點睛】本題主要考查余弦定理及正弦定理的應(yīng)用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2).6、C【解析】

A.時無最小值;

B.令,由,可得,即,令,利用單調(diào)性研究其最值;

C.令,令,利用單調(diào)性研究其最值;

D.當(dāng)時,,無最小值.【詳解】解:A.時無最小值,故A錯誤;

B.令,由,可得,即,令,則其在上單調(diào)遞減,故,故B錯誤;C.令,令,則其在上單調(diào)遞減,上單調(diào)遞增,故,故C正確;

D.當(dāng)時,,無最小值,故D不正確.

故選:C.【點睛】本題考查了基本不等式的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.7、C【解析】

試題分析:因為題目中給定了A,B是任意事件,那么利用集合的并集思想來分析,兩個事件的和事件不一定等于其中的事件A.可能大于事件A選項B,AB表示的為AB的積事件,那么利用集合的思想,和交集類似,不一定包含A事件.選項C,由于利用集合的交集和并集的思想可知,A+AB=A表示的等式成立.選項D中,利用補(bǔ)集的思想和交集的概念可知,表示的事件A不發(fā)生了,同時事件B發(fā)生,顯然D不成立.考點:本試題考查了事件的關(guān)系.點評:對于事件之間的關(guān)系的理解,可以運(yùn)用集合中的交集,并集和補(bǔ)集的思想分別對應(yīng)到事件中的和事件,積事件,非事件上來分析得到,屬于基礎(chǔ)題.【詳解】請在此輸入詳解!8、B【解析】

由角度與弧度的關(guān)系轉(zhuǎn)化.【詳解】-150.故選:B.【點睛】本題考查角度與弧度的互化,解題關(guān)鍵是掌握關(guān)系式:.9、D【解析】

由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項和公式可得則,,得解.【詳解】解:由是等差數(shù)列,又,所以,又首項,,則,,則,,即使前n項和成立的最大正整數(shù),故選:D.【點睛】本題考查了等差數(shù)列的性質(zhì),重點考查了等差數(shù)列前項和公式,屬中檔題.10、C【解析】由題意得,∴.選C.二、填空題:本大題共6小題,每小題5分,共30分。11、2n2.【解析】

由已知列關(guān)于首項與公差的方程組,求解可得首項與公差,再由等差數(shù)列的前項和求解.【詳解】由題意,有,即,解得,所以.故答案為:,.【點睛】本題考查等差數(shù)列的通項公式與前項和,考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.12、【解析】

點代入的方程求出k,再由求出直線的斜率,即可寫出直線的點斜式方程.【詳解】將點代入直線得,,解得,又,,于是的方程為,整理得.故答案為:【點睛】本題考查直線的方程,屬于基礎(chǔ)題.13、【解析】

根據(jù)的坐標(biāo)表示,即可得出,解出即可.【詳解】,,.【點睛】本題主要考查平行向量的坐標(biāo)關(guān)系應(yīng)用.14、【解析】

由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點睛】本題考查反正弦函數(shù),解題時注意反正弦函數(shù)的取值范圍是,結(jié)合誘導(dǎo)公式求解.15、【解析】

根據(jù)空間中兩點間的距離公式即可得到答案【詳解】由空間中兩點間的距離公式可得;;故距離為3【點睛】本題考查空間中兩點間的距離公式,屬于基礎(chǔ)題。16、【解析】

根據(jù)題意到,聯(lián)立方程得到,得到答案.【詳解】,故.,故,故,故.故雙曲線漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線的漸近線問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)見證明【解析】

(1)由,,得,進(jìn)而得即可證明平面.(2)平面得,由,,得,進(jìn)而證明平面,則平面平面【詳解】證明:(1)因為,,所以,所以,因為平面,平面,所以平面.(2)因為平面,平面,所以.因為,,所以,又,所以平面.又平面,所以平面平面.【點睛】本題考查線面平行的判定,面面垂直的判定,考查空間想象及推理能力,熟記判定定理是關(guān)鍵,是基礎(chǔ)題18、(1)(2)【解析】

(1)由和可列出方程組,解出和,即得通項公式;(2)將(1)中所得通項公式代入,列項,用裂項相消法求的前n項和.【詳解】解:(1)因為,,所以因為,所以故的通項公式為.(2)因為,所以.【點睛】本題考查求等差數(shù)列通項公式和用裂項相消法求數(shù)列前n項和,是典型考題.19、(I)0.045;(II)75;(III)0.7【解析】

(Ⅰ)根據(jù)頻率之和為1,結(jié)合題中數(shù)據(jù),即可求出結(jié)果;(II)每組的中間值乘以該組頻率,再求和,即可得出結(jié)果;(III)用列舉法列舉出總的基本事件,以及滿足條件的基本事件,基本事件的個數(shù)比即為所求的概率.【詳解】(Ⅰ)由題意可得:(Ⅱ)各組的頻率分別為0.05,0.25,0.45,0.15,0.1,所以可估計全年級的平均分為;(Ⅲ)分?jǐn)?shù)落在[80,90)的人數(shù)有3人,設(shè)為a,b,c,落在[90,100的人數(shù)有2人,設(shè)為A、B,則從中隨機(jī)抽取兩名的結(jié)果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10種,其中至少有一人不低于90分的有7種,故概率為0.7.【點睛】本題主要考查由頻率分布直方圖求參數(shù),以及求均值的問題,同時考查古典概型的問題,熟記古典概型的概率公式,以及均值的求法即可,屬于??碱}型.20、(1),(2)【解析】

(1)根據(jù)分層抽樣的概念,可得,求解即可;(2)分別記從高校抽取的2人為,,從高校抽取的3人為,,,先列出從5人中選2人作專題發(fā)言的基本事件,再列出2人都來自高校的基本事件,進(jìn)而求出概率【詳解】(1)由題意可得,所以,(2)記從高校抽取的2人為,,從高校抽取的3人為,,,則從高校,抽取的5人中選2人作專題發(fā)言的基本事件有,,,,,,,,,共10種設(shè)選中的2人都來自高校的事件為,則包含的基本事件有,,共3種因此,故選中的2人都來自高校的概率為【點睛】本題考查分層抽樣,考查古典概型,屬于基礎(chǔ)題21、(1)證明見解析;(2).【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論