版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆內(nèi)蒙古包頭市稀土高新區(qū)二中高一下數(shù)學期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在等腰梯形中,,于點,則()A. B.C. D.2.由小到大排列的一組數(shù)據(jù),,,,,其中每個數(shù)據(jù)都小于,那么對于樣本,,,,,的中位數(shù)可以表示為()A. B. C. D.3.已知中,,,為邊上的中點,則()A.0 B.25 C.50 D.1004.已知圓,設平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.495.下列函數(shù)中,在區(qū)間上為減函數(shù)的是A. B. C. D.6.某中學初中部共有110名教師,高中部共有150名教師,根據(jù)下列頻率分布條形圖(部分)可知,該校女教師的人數(shù)為()A.93 B.123 C.137 D.1677.棱長都是1的三棱錐的表面積為()A. B. C. D.8.已知等差數(shù)列的前項和,若,則()A.25 B.39 C.45 D.549.在等差數(shù)列中,如果,則數(shù)列前9項的和為()A.297 B.144 C.99 D.6610.設為等差數(shù)列的前n項和,若,則使成立的最小正整數(shù)n為()A.6 B.7 C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.設是定義在上以2為周期的偶函數(shù),已知,,則函數(shù)在上的解析式是12.已知球的表面積為4,則該球的體積為________.13.設表示不超過的最大整數(shù),則________14.在銳角△中,,,,則________15.已知無窮等比數(shù)列的首項為,公比為q,且,則首項的取值范圍是________.16.某工廠生產(chǎn)甲、乙、丙三種型號的產(chǎn)品,產(chǎn)品數(shù)量之比為3:5:7,現(xiàn)用分層抽樣的方法抽出容量為的樣本,其中甲種產(chǎn)品有18件,則樣本容量=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)若關于x的不等式m2x2﹣2mx>﹣x2﹣x﹣1恒成立,求實數(shù)m的取值范圍.(2)解關于x的不等式(x﹣1)(ax﹣1)>0,其中a<1.18.在中,角A,B,C的對邊分別為a,b,c,已知.(1)求角B的大小;(2)若,,求的面積.19.已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC20.某校高一年級有學生480名,對他們進行政治面貌和性別的調(diào)查,其結(jié)果如下:性別團員群眾男80女180(1)若隨機抽取一人,是團員的概率為,求,;(2)在團員學生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名團員中任選2人,求兩人中至多有1個女生的概率.21.已知圓,圓與圓關于直線對稱.(1)求圓的方程;(2)過直線上的點分別作斜率為的兩條直線,使得被圓截得的弦長與被圓截得的弦長相等.(i)求的坐標;(ⅱ)過任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)等腰三角形的性質(zhì)可得是的中點,由平面向量的加法運算法則結(jié)合向量平行的性質(zhì)可得結(jié)果.【詳解】因為,所以是的中點,可得,故選.【點睛】本題主要考查向量的幾何運算以及向量平行的性質(zhì),屬于簡單題.向量的運算有兩種方法,一是幾何運算往往結(jié)合平面幾何知識和三角函數(shù)知識解答,運算法則是:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標運算:建立坐標系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標運算比較簡單)2、C【解析】
根據(jù)不等式的基本性質(zhì),對樣本數(shù)據(jù)按從小到大排列為,取中間的平均數(shù).【詳解】,,則該組樣本的中位數(shù)為中間兩數(shù)的平均數(shù),即.【點睛】考查基本不等式性質(zhì)運用和中位數(shù)的定義.3、C【解析】
三角形為直角三角形,CM為斜邊上的中線,故可知其長度,由向量運算法則,對式子進行因式分解,由平行四邊形法則,求出向量,由長度計算向量積.【詳解】由勾股定理逆定理可知三角形為直角三角形,CM為斜邊上的中線,所以,原式=.故選C.【點睛】本題考查向量的線性運算及數(shù)量積,數(shù)量積問題一般要將兩個向量轉(zhuǎn)化為已知邊長和夾角的兩向量,但本題經(jīng)化簡能得到共線的兩向量所以直接根據(jù)模的大小計算即可.4、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因為圓心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當圓心C位于B點時,取得最大值,B點的坐標為,即時是最大值.考點:線性規(guī)劃綜合問題.5、D【解析】試題分析:在區(qū)間上為增函數(shù);在區(qū)間上先增后減;在區(qū)間上為增函數(shù);在區(qū)間上為減函數(shù),選D.考點:函數(shù)增減性6、C【解析】.7、A【解析】
三棱錐的表面積為四個邊長為1的等邊三角形的面積和,故,故選A.8、A【解析】
設等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項和公式即可求出.【詳解】解:設等差數(shù)列的公差為,則由,得:,,,故選:A.【點睛】本題主要考查等差數(shù)列的通項公式和等差數(shù)列的前項和公式,屬于基礎題.9、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點:等差數(shù)列性質(zhì)及前n項和點評:本題考查了等差數(shù)列性質(zhì)及前n項和,掌握相關公式及性質(zhì)是解題的關鍵.10、C【解析】
利用等差數(shù)列下標和的性質(zhì)可確定,,,由此可確定最小正整數(shù).【詳解】且,使得成立的最小正整數(shù)故選:【點睛】本題考查等差數(shù)列性質(zhì)的應用問題,關鍵是能夠熟練應用等差數(shù)列下標和性質(zhì)化簡前項和公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:根據(jù)題意,由于是定義在上以2為周期的偶函數(shù),那么當,,可知當x,,那么利用周期性可知,在上的解析式就是將x,的圖像向右平移2個單位得到的,因此可知,答案為.考點:函數(shù)奇偶性、周期性的運用點評:解決此類問題的關鍵是熟練掌握函數(shù)的有關性質(zhì),即周期性,奇偶性,單調(diào)性等有關性質(zhì).12、【解析】
先根據(jù)球的表面積公式求出半徑,再根據(jù)體積公式求解.【詳解】設球半徑為,則,解得,所以【點睛】本題考查球的面積、體積計算,屬于基礎題.13、【解析】
根據(jù)1弧度約等于且正弦函數(shù)值域為,故可分別計算求和中的每項的正負即可.【詳解】故答案為:【點睛】本題主要考查了三角函數(shù)的計算,屬于基礎題型.14、【解析】
由正弦定理,可得,求得,即可求解,得到答案.【詳解】由正弦定理,可得,所以,又由△為銳角三角形,所以.故答案為:.【點睛】本題主要考查了正弦定理得應用,其中解答中熟記正弦定理,準確計算是解答的關鍵,著重考查了計算能力,屬于基礎題.15、【解析】
根據(jù)極限存在得出,對分、和三種情況討論得出與之間的關系,可得出的取值范圍.【詳解】由于,則.①當時,則,;②當時,則,;③當時,,解得.綜上所述:首項的取值范圍是,故答案為:.【點睛】本題考查極限的應用,要結(jié)合極限的定義得出公比的取值范圍,同時要對公比的取值范圍進行分類討論,考查分類討論思想的應用,屬于中等題.16、【解析】試題分析:由題意得,解得,故答案為.考點:分層抽樣.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)m;(2)見解析【解析】
(1)利用△<0列不等式求出實數(shù)m的取值范圍;(2)討論0<a<1、a=0和a<0,分別求出對應不等式的解集.【詳解】(1)不等式m2x2﹣2mx>﹣x2﹣x﹣1化為(m2+1)x2﹣(2m﹣1)x+1>0,由m2+1>0知,△=(2m﹣1)2﹣4(m2+1)<0,化簡得﹣4m﹣3<0,解得m,所以實數(shù)m的取值范圍是m;(2)0<a<1時,不等式(x﹣1)(ax﹣1)>0化為(x﹣1)(x)>0,且1,解得x<1或x,所以不等式的解集為{x|x<1或x};a=0時,不等式(x﹣1)(ax﹣1)>0化為﹣(x﹣1)>0,解得x<1,所以不等式的解集為{x|x<1};a<0時,不等式(x﹣1)(ax﹣1)>0化為(x﹣1)(x)<0,且1,解得x<1,所以不等式的解集為{x|x<1}.綜上知,0<a<1時,不等式的解集為{x|x<1或x};a=0時,不等式的解集為{x|x<1};a<0時,不等式的解集為{x|x<1}.【點睛】本題考查了不等式恒成立問題和含有字母系數(shù)的不等式解法與應用問題,是基礎題.18、(1)(2)【解析】
(1)先利用正弦定理將已知等式化為,化簡后再運用余弦定理可得角B;(2)由和余弦定理可得,面積為,將和的值代入面積公式即可.【詳解】解:(1)由題,由正弦定理得:,即則所以.(2)因為,所以,解得所以【點睛】本題考查解三角形,是??碱}型.19、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.試題解析:(Ⅰ)∵a、b、c成等差,且公差為1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等變形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周長f(θ)=|AC|+|BC|+|AB|=,又,當,即時,f(θ)取得最大值.考點:1.余弦定理;1.正弦定理20、(1),;(2).【解析】
(1)隨機抽取一人,是團員的概率為,得,再由總?cè)藬?shù)為480得的另一個關系式,聯(lián)立求解,即可得出結(jié)論;(2)根據(jù)團員男女生人數(shù)的比例,可求出抽取一個樣本容量為5的樣本,男生為2人,女生為3人,將5人編號,列出從5人中抽取2人的所有基本事件,求出至多有1個女生的基本事件的個數(shù),按古典概型求概率,即可求解.【詳解】解:(1)由題意得:,解得,.(2)在團員學生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,抽中男生:人,抽中女生:人,2名男生記為,3名女生記為,在這5名團員中任選2人,基本事件有:共有10個基本事件,兩人中至多有1個女生包含的基本事件個數(shù)有7個,∴兩人中至多有1個女生的概率.【點睛】本題考查分層抽樣抽取元素個數(shù)的分配,考查古典概型的概率,屬于基礎題.21、(1);(2)(i),(ii)見解析【解析】
(1)根據(jù)題意,將問題轉(zhuǎn)化為關于直線的對稱點即可得到,半徑不變,從而得到方程;(2)(i)設,由于弦長和距離都相等,故P到兩直線的距離也相等,利用點到線距離公式即可得到答案;(ⅱ)分別討論斜率不存在和為0三種情況分別計算對應弦長,故可判斷.【詳解】(1)設,因為圓與圓關于直線對稱,,則直線與直線垂直,中點在直線上,得解得所以圓.(2)(i)設的方程為,即;的方程為,即.因為被圓截得的弦長與被圓截得的弦長相等,且兩圓半徑相等,所以到的距離與到的距離相等,即,所以或.由題意,到直線的距離,所以不滿足題意,舍去,故,點坐標為.(ii)過點任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.證明如下:當?shù)?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年武警遼寧總隊醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年05月浙江中信銀行臺州分行社會招考(514)筆試歷年參考題庫附帶答案詳解
- 2024年05月江西九江銀行吉安分行實習生招考(507)筆試歷年參考題庫附帶答案詳解
- 2024年桂林市腫瘤醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 人工智能在農(nóng)業(yè)預測和決策中的角色
- 醫(yī)療影像分析的AI解決方案
- 信貸可得性和會計信息質(zhì)量
- 2024年租賃協(xié)議(房產(chǎn))3篇
- 隨班就讀心得體會模板
- 產(chǎn)品經(jīng)理求職信
- ESD靜電防護檢測及管控標準
- 組織內(nèi)外部環(huán)境要素識別表
- 韌性理論與韌性城市建設
- 高中數(shù)學作業(yè)分層設計的有效性分析 論文
- 基于二十四節(jié)氣開展幼兒園美育活動的實踐策略 論文
- 四年級語文閱讀理解《嫦娥奔月(節(jié)選)》練習(含答案)
- 鼻咽炎-疾病研究白皮書
- 普速鐵路工務安全規(guī)則
- 石阡縣人民醫(yī)院內(nèi)科綜合大樓建設項目環(huán)評報告
- 業(yè)主搭建陽光房申請書
- 消費主義影響下中國當代陶藝的特點獲獎科研報告
評論
0/150
提交評論