吉林省松原市油田第十一中學2023-2024學年數(shù)學高一下期末教學質量檢測試題含解析_第1頁
吉林省松原市油田第十一中學2023-2024學年數(shù)學高一下期末教學質量檢測試題含解析_第2頁
吉林省松原市油田第十一中學2023-2024學年數(shù)學高一下期末教學質量檢測試題含解析_第3頁
吉林省松原市油田第十一中學2023-2024學年數(shù)學高一下期末教學質量檢測試題含解析_第4頁
吉林省松原市油田第十一中學2023-2024學年數(shù)學高一下期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省松原市油田第十一中學2023-2024學年數(shù)學高一下期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.無論取何實數(shù),直線恒過一定點,則該定點坐標為()A. B. C. D.2.在中,角的對邊分別為,且,,,則的周長為()A. B. C. D.3.樣本中共有個個體,其值分別為、、、、.若該樣本的平均值為,則樣本的方差為()A. B. C. D.4.已知,是兩個變量,下列四個散點圖中,,雖負相關趨勢的是()A. B.C. D.5.已知,,若對任意的,恒成立,則角的取值范圍是A.B.C.D.6.如圖,有一輛汽車在一條水平的公路上向正西行駛,汽車在點測得公路北側山頂?shù)难鼋菫?0°,汽車行駛后到達點測得山頂在北偏西30°方向上,且仰角為45°,則山的高度為()A. B. C. D.7.已知數(shù)列滿足:,,則該數(shù)列中滿足的項共有()項A. B. C. D.8.已知數(shù)列滿足若,則數(shù)列的第2018項為()A. B. C. D.9.若正實數(shù),滿足,且恒成立,則實數(shù)的取值范圍為()A. B. C. D.10.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為()A.-12 B.-14 C.10 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,若與的夾角為鈍角,則實數(shù)的取值范圍為______.12.將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則__________.13.在平面直角坐標系中,角的頂點在原點,始邊與軸的正半軸重合,終邊過點,則______14.______.15.設是公差不為0的等差數(shù)列,且成等比數(shù)列,則的前10項和________.16.點與點關于直線對稱,則直線的方程為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當,時,求不等式的解集;(2)若,,的最小值為2,求的最小值.18.已知0<α<π,cos(1)求tanα+(2)求sin2α+119.設等差數(shù)列的前n項和為,,.(1)求;(2)設,求數(shù)列的前n項和.20.已知函數(shù),且,.(1)求該函數(shù)的最小正周期及對稱中心坐標;(2)若方程的根為,且,求的值.21.已知,,且向量與的夾角為.(1)若,求;(2)若與垂直,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

通過整理直線的形式,可求得所過的定點.【詳解】直線可整理為,當,解得,無論為何值,直線總過定點.故選A.【點睛】本題考查了直線過定點問題,屬于基礎題型.2、C【解析】

根據(jù),得到,利用余弦定理,得到關于的方程,從而得到的值,得到的周長.【詳解】在中,由正弦定理因為,所以因為,,所以由余弦定理得即,解得,所以所以的周長為.故選C.【點睛】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡單題.3、D【解析】

根據(jù)樣本的平均數(shù)計算出的值,再利用方差公式計算出樣本的方差.【詳解】由題意可知,,解得,因此,該樣本的方差為,故選:D.【點睛】本題考查方差與平均數(shù)的計算,靈活利用平均數(shù)與方差公式進行求解是解本題的關鍵,考查運算求解能力,屬于基礎題.4、C【解析】由圖可知C選項中的散點圖描述了隨著的增加而減小的變化趨勢,故選C5、B【解析】

由向量的數(shù)量積得,對任任意的,恒成立,轉化成關于的一次函數(shù),保證在和的函數(shù)值同時小于0即可.【詳解】,因為對任意的恒成立,則,,解得:,故選B.【點睛】本題考查向量數(shù)量積的坐標運算、三角恒等變換及不等式恒成立問題,求解的關鍵是變換主元的思想,即把不等式看成是關于變量的一次函數(shù),問題則變得簡單.6、D【解析】

通過題意可知:,設山的高度,分別在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【詳解】由題意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本題選D.【點睛】本題考查了余弦定理的應用,弄清題目中各個角的含義是解題的關鍵.7、C【解析】

利用累加法求出數(shù)列的通項公式,然后解不等式,得出符合條件的正整數(shù)的個數(shù),即可得出結論.【詳解】,,,解不等式,即,即,,則或.故選:C.【點睛】本題考查了數(shù)列不等式的求解,同時也涉及了利用累加法求數(shù)列通項,解題的關鍵就是求出數(shù)列的通項,考查運算求解能力,屬于中等題.8、A【解析】

利用數(shù)列遞推式求出前幾項,可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應用,考查學生分析解決問題的能力,屬于中檔題.9、B【解析】

根據(jù),結合基本不等式可求得,從而得到關于的不等式,解不等式求得結果.【詳解】由題意知:,,(當且僅當,即時取等號),解得:本題正確選項:【點睛】本題考查利用基本不等式求解和的最小值問題,關鍵是配湊出符合基本不等式的形式,從而求得最值.10、A【解析】

由直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【詳解】∵直線mx+4y﹣2=0與直線2x﹣5y+n=0垂直,垂足為(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案為:A【點睛】本題考查實數(shù)值的求法,考查直線與直線垂直的性質等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題意得出且與不共線,利用向量的坐標運算可求出實數(shù)的取值范圍.【詳解】由于與的夾角為鈍角,則且與不共線,,,,解得且,因此,實數(shù)的取值范圍是,故答案為:.【點睛】本題考查利用向量的夾角求參數(shù),解題時要找到其轉化條件,設兩個非零向量與的夾角為,為銳角,為鈍角.12、【解析】

先利用輔助角公式將函數(shù)的解析式化簡,根據(jù)三角函數(shù)的變化規(guī)律求出函數(shù)的解析式,即可計算出的值.【詳解】,由題意可得,因此,,故答案為.【點睛】本題考查輔助角公式化簡、三角函數(shù)圖象變換,在三角圖象相位變換的問題中,首先應該將三角函數(shù)的解析式化為(或)的形式,其次要注意左加右減指的是在自變量上進行加減,考查計算能力,屬于中等題.13、-1【解析】

根據(jù)三角函數(shù)的定義求得,再代入的展開式進行求值.【詳解】角終邊過點,終邊在第三象限,根據(jù)三角函數(shù)的定義知:,【點睛】考查三角函數(shù)的定義及三角恒等變換,在變換過程中要注意符號的正負.14、【解析】

先令,得到,兩式作差,根據(jù)等比數(shù)列的求和公式,化簡整理,即可得出結果.【詳解】令,則,兩式作差得:所以故答案為:【點睛】本題主要考查數(shù)列的求和,熟記錯位相加法求數(shù)列的和即可,屬于常考題型.15、【解析】

利用等差數(shù)列的通項公式和等比數(shù)列的性質求出公差,由此能求出【詳解】因為是公差不為0的等差數(shù)列,且成等比數(shù)列所以,即解得或(舍)所以故答案為:【點睛】本題考查等差數(shù)列前10項和的求法,解題時要認真審題,注意等比數(shù)列的性質合理運用.16、【解析】

根據(jù)和關于直線對稱可得直線和直線垂直且中點在直線上,從而可求得直線的斜率,利用點斜式可得直線方程.【詳解】由,得:且中點坐標為和關于直線對稱且在上的方程為:,即:本題正確結果:【點睛】本題考查根據(jù)兩點關于直線對稱求解直線方程的問題,關鍵是明確兩點關于直線對稱則連線與對稱軸垂直,且中點必在對稱軸上,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用零點討論法解絕對值不等式;(2)利用絕對值三角不等式得到a+b=2,再利用基本不等式求的最小值.【詳解】(1)當,時,,得或或,解得:,∴不等式的解集為.(2),∴,∴,當且僅當,時取等號.∴的最小值為.【點睛】本題主要考查零點討論法解絕對值不等式,考查絕對值三角不等式和基本不等式求最值,意在考查學生對這些知識的理解掌握水平和分析推理能力.18、(1)12;(2)1【解析】

(1)利用同角三角函數(shù)平方和商數(shù)關系求得tanα;利用兩角和差正切公式求得結果;(2)利用二倍角公式化簡所求式子,分子分母同時除以cos2α【詳解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【點睛】本題考查利用同角三角函數(shù)、兩角和差正切公式、二倍角的正余弦公式化簡求值問題,關鍵是能夠利用求解關于正余弦的齊次式的方式,將問題轉化為與tanα19、(1)(2)【解析】

(1)在等差數(shù)列中根據(jù),,可求得其首項與公差,從而可求得;(2)可證明為等比數(shù)列,利用等比數(shù)列的求和公式計算即可.【詳解】(1);(2),所以.【點睛】本題考查等比數(shù)列的前項和,著重考查等差數(shù)列的性質與通項公式及等比數(shù)列的前項和公式,屬于基礎題.20、(1)最小正周期為.對稱中心坐標為;(2)-1【解析】

(1)由題意兩未知數(shù)列兩方程即可求出、的值,再進行三角變換,可得的解析式,再利用正弦函數(shù)的周期公式、圖象的對稱性,即可得出結論.(2)先由條件求得的值,可得的值.【詳解】(1)由,得:,解得:,,,即函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論