版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省汕頭市潮南區(qū)2023-2024學年高一下數(shù)學期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形2.已知圓柱的側面展開圖是一個邊長為的正方形,則這個圓柱的體積是()A. B. C. D.3.如圖,A,B是半徑為1的圓周上的定點,P為圓周上的動點,∠APB是銳角,大小為.圖中△PAB的面積的最大值為()A.+sin2 B.sin+sin2C.+sin D.+cos4.已知點均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.5.過點且與直線垂直的直線方程是.A. B. C. D.6.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.7.設的三個內(nèi)角成等差數(shù)列,其外接圓半徑為2,且有,則三角形的面積為()A. B. C.或 D.或8.幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是A.440 B.330C.220 D.1109.設△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,且,則的最大值為()A. B.1 C. D.10.某正弦型函數(shù)的圖像如圖,則該函數(shù)的解析式可以為().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓錐底面半徑為1,高為,則該圓錐的側面積為_____.12.設是等差數(shù)列的前項和,若,,則公差(___).13.已知正方體的棱長為1,則三棱錐的體積為______.14.若a、b、c正數(shù)依次成等差數(shù)列,則的最小值為_______.15.執(zhí)行如圖所示的程序框圖,則輸出的_______.16.在中,兩直角邊和斜邊分別為a,b,c,若則實數(shù)x的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過,,三點.(1)求圓的標準方程;(2)若過點N的直線被圓截得的弦AB的長為,求直線的傾斜角.18.從半徑為1的半圓出發(fā),以此向內(nèi)、向外連續(xù)作半圓,且后一個半圓的直徑為前一個半圓的半徑,如此下去,可得到無數(shù)個半圓.(1)求出所有這些半圓圍城的封閉圖形的周長;(2)求出所有這些半圓圍城的封閉圖形的面積.19.已知中,角的對邊分別為.(1)若依次成等差數(shù)列,且公差為2,求的值;(2)若的外接圓面積為,求周長的最大值.20.已知,為兩非零有理數(shù)列(即對任意的,,均為有理數(shù)),為一個無理數(shù)列(即對任意的,為無理數(shù)).(1)已知,并且對任意的恒成立,試求的通項公式;(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為;(3)已知,,試計算.21.求適合下列條件的直線方程:經(jīng)過點,傾斜角等于直線的傾斜角的倍;經(jīng)過點,且與兩坐標軸圍成一個等腰直角三角形。
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用正弦定理結合條件,得到,再由,結合余弦定理,得到,從而得到答案.【詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因為,所以,由余弦定理得.為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【點睛】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.2、A【解析】
由已知易得圓柱的高為,底面圓周長為,求出半徑進而求得底面圓半徑即可求出圓柱體積?!驹斀狻康酌鎴A周長,,所以故選:A【點睛】此題考查圓柱的側面展開為長方形,長為底面圓周長,寬為圓柱高,屬于簡單題目。3、B【解析】
由正弦定理可得,,則,,當點在的中垂線上時,取得最大值,此時的面積最大,求解即可.【詳解】在中,由正弦定理可得,,則.,當點在的中垂線上時,取得最大值,此時的面積最大.取的中點,過點作的垂線,交圓于點,取圓心為,則(為銳角),.所以的面積最大為.故選B.【點睛】本題考查了三角形的面積的計算、正弦定理的應用,考查了三角函數(shù)的化簡,考查了計算能力,屬于基礎題.4、A【解析】
設是的外心,則三棱錐體積最大時,平面,球心在上.由此可計算球半徑.【詳解】如圖,設是的外心,則三棱錐體積最大時,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設球半徑為,則由得,解得,∴球體積為.故選A.【點睛】本題考查球的體積,關鍵是確定球心位置求出球的半徑.5、A【解析】
根據(jù)與已知直線垂直的直線系方程可假設直線為,代入點解得直線方程.【詳解】設與直線垂直的直線為:代入可得:,解得:所求直線方程為:,即本題正確選項:【點睛】本題考查利用兩條直線的垂直關系求解直線方程的問題,屬于基礎題.6、A【解析】
觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。7、C【解析】
的三個內(nèi)角成等差數(shù)列,可得角A、C的關系,將已知條件中角C消去,利用三角函數(shù)和差角公式展開即可求出角A的值,再由三角形面積公式即可求得三角形面積.【詳解】的三個內(nèi)角成等差數(shù)列,則,解得,所以,所以,整理得,則或,因為,解得或.①當時,;②當時,,故選C.【點睛】本題考查了三角形內(nèi)角和定理、等差數(shù)列性質、三角函數(shù)和差角公式、三角函數(shù)輔助角公式,綜合性較強,屬于中檔題;解題中主要是通過消元構造關于角A的三角方程,其中利用三角函數(shù)和差角公式和輔助角公式對式子進行化解是解題的關鍵.8、A【解析】由題意得,數(shù)列如下:則該數(shù)列的前項和為,要使,有,此時,所以是第組等比數(shù)列的部分和,設,所以,則,此時,所以對應滿足條件的最小整數(shù),故選A.點睛:本題非常巧妙地將實際問題和數(shù)列融合在一起,首先需要讀懂題目所表達的具體含義,以及觀察所給定數(shù)列的特征,進而判斷出該數(shù)列的通項和求和.另外,本題的難點在于數(shù)列里面套數(shù)列,第一個數(shù)列的和又作為下一個數(shù)列的通項,而且最后幾項并不能放在一個數(shù)列中,需要進行判斷.9、D【解析】
根據(jù)正弦定理將已知等式化簡得,再根據(jù)差角正切公式以及基本不等式可得結論.【詳解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,當且僅當,即時取等號.故選:D.【點睛】本題考查了正弦定理在解三角形中的應用,屬于基礎題.10、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點法中的第一個點,∴,∴把A,B排除,對于C:,故選C考點:本題考查函數(shù)的圖象和性質點評:解決本題的關鍵是確定的值二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知求得母線長,代入圓錐側面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側面積S=πrl=2π.故答案為:2π.【點睛】本題考查圓錐側面積的求法,側面積公式S=πrl.12、【解析】
根據(jù)兩個和的關系得到公差條件,解得結果.【詳解】由題意可知,,即,又,兩式相減得,.【點睛】本題考查等差數(shù)列和項的性質,考查基本分析求解能力,屬基礎題.13、.【解析】
根據(jù)題意畫出正方體,由線段關系即可求得三棱錐的體積.【詳解】根據(jù)題意,畫出正方體如下圖所示:由棱錐的體積公式可知故答案為:【點睛】本題考查了三棱錐體積求法,通過轉換頂點法求棱錐的體積是常用方法,屬于基礎題.14、1【解析】
由正數(shù)a、b、c依次成等差數(shù)列,則,則,再結合基本不等式求最值即可.【詳解】解:由正數(shù)a、b、c依次成等差數(shù)列,則,則,當且僅當,即時取等號,故答案為:1.【點睛】本題考查了等差中項的運算,重點考查了基本不等式的應用,屬基礎題.15、【解析】
按照程序框圖運行程序,直到a的值滿足a>100時,輸出結果即可.【詳解】第一次循環(huán):a=3;第二次循環(huán):a=7;第三次循環(huán):a=15;第四次循環(huán):a=31;第五次循環(huán):a=63;第六次循環(huán):a=127,a>100,所以輸出a.所以本題答案為127.【點睛】本題考查根據(jù)程序框圖中的循環(huán)結構計算輸出結果的問題,屬于基礎題.16、【解析】
計算得到,根據(jù)得到范圍.【詳解】兩直角邊和斜邊分別為a,b,c,則,則,則,故.故答案為:.【點睛】本題考查了正弦定理和三角函數(shù)的綜合應用,意在考查學生的綜合應用能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)30°或90°.【解析】
(1)解法一:將圓的方程設為一般式,將題干三個點代入圓的方程,解出相應的參數(shù)值,即可得出圓的一般方程,再化為標準方程;解法二:求出線段和的中垂線方程,將兩中垂線方程聯(lián)立求出交點坐標,即為圓心坐標,然后計算為圓的半徑,即可寫出圓的標準方程;(2)先利用勾股定理計算出圓心到直線的距離為,并對直線的斜率是否存在進行分類討論:一是直線的斜率不存在,得出直線的方程為,驗算圓心到該直線的距離為;二是當直線的斜率存在時,設直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關于的方程,求出的值.結合前面兩種情況求出直線的傾斜角.【詳解】(1)解法一:設圓的方程為,則∴即圓為,∴圓的標準方程為;解法二:則中垂線為,中垂線為,∴圓心滿足∴,半徑,∴圓的標準方程為.(2)①當斜率不存在時,即直線到圓心的距離為1,也滿足題意,此時直線的傾斜角為90°,②當斜率存在時,設直線的方程為,由弦長為4,可得圓心到直線的距離為,,∴,此時直線的傾斜角為30°,綜上所述,直線的傾斜角為30°或90°.【點睛】本題考查圓的方程以及直線截圓所得弦長的計算,在求直線與圓所得弦長的計算中,問題的核心要轉化為弦心距的計算,弦心距的計算主要有以下兩種方式:一是利用勾股定理計算,二是利用點到直線的距離公式計算圓心到直線的距離.18、(1)(2)【解析】
(1)由第n個半圓的周長得,再利用無窮等比數(shù)列求和即可(2)由第n個半圓的面積得,再利用無窮等比數(shù)列求和即可【詳解】(1)由題意知,圓的半徑滿足數(shù)列,設第n個半圓的周長為,所以,則所有這些半圓圍成的封閉圖形的周長.(2)題意知,設第n個半圓的面積為,則,所以所有這些半圓圍成的封閉圖形的面積將為.【點睛】本題考查無窮等比數(shù)列的和,注意圓的半徑為等比數(shù)列,是周長及面積的考查,是基礎題19、(1);(2).【解析】
(1)由成等差數(shù)列,且公差為,可得,利用余弦定理可構造關于的方程,解方程求得結果;(2)設,利用外接圓面積為,求得外接圓的半徑.根據(jù)正弦定理,利用表示出三邊,將周長表示為關于的函數(shù),利用三角函數(shù)的值域求解方法求得最大值.【詳解】(1)依次成等差數(shù)列,且公差為,,由余弦定理得:整理得:,解得:或又,則(2)設,外接圓的半徑為,則,解得:由正弦定理可得:可得:,,的周長又當,即:時,取得最大值【點睛】本題考查了正弦定理、余弦定理解三角形、三角形周長最值的求解.求解周長的最值的關鍵是能夠將周長構造為關于角的函數(shù),從而利用三角函數(shù)的知識來進行求解.考查了推理能力與計算能力,屬于中檔題.20、(1);(2)證明見解析;(3).【解析】
(1)根據(jù)不等式可得,把代入即可解出(2)根據(jù)化簡,利用為有理數(shù)即可解決(3)根據(jù)題意可知,本題需分為奇數(shù)和偶數(shù)時討論,通過求出.【詳解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,為有理數(shù)列,為無理數(shù)列,∴,∴,以上每一步可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《螺紋與測量》課件
- 《通信系統(tǒng)概論》課件-第2章
- 《GSM的無線信道》課件
- 合同備案解除通知書
- 工傷停工留薪期合同到期補充協(xié)議
- 2025年百色貨運從業(yè)資格證考試題庫a2
- 2025年廣州道路貨物運輸從業(yè)資格證模擬考試
- 醫(yī)療服務融資管理辦法
- 火車站出口崗亭施工合同
- 風力發(fā)電設備搬運吊車租賃協(xié)議
- 護理質控輸液查對制度
- 2024三方物流園區(qū)租賃與運營管理合同3篇
- 【MOOC】例解宏觀經(jīng)濟統(tǒng)計學-江西財經(jīng)大學 中國大學慕課MOOC答案
- 《中國的土地政策》課件
- 【MOOC】電工學-西北工業(yè)大學 中國大學慕課MOOC答案
- 專題12 簡·愛-2024年中考語文復習文學名著必考篇目分層訓練(原卷版)
- 【高考語文】2024年全國高考新課標I卷-語文試題評講
- 客戶滿意度論文開題報告
- 2024-2025學年八年級上冊歷史期末復習選擇題(解題指導+專項練習)原卷版
- 課桌椅人體工程學
- 中石油系統(tǒng)員工安全培訓
評論
0/150
提交評論