2024屆黑龍江省佳木斯市湯原縣高級中學數(shù)學高一下期末聯(lián)考試題含解析_第1頁
2024屆黑龍江省佳木斯市湯原縣高級中學數(shù)學高一下期末聯(lián)考試題含解析_第2頁
2024屆黑龍江省佳木斯市湯原縣高級中學數(shù)學高一下期末聯(lián)考試題含解析_第3頁
2024屆黑龍江省佳木斯市湯原縣高級中學數(shù)學高一下期末聯(lián)考試題含解析_第4頁
2024屆黑龍江省佳木斯市湯原縣高級中學數(shù)學高一下期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆黑龍江省佳木斯市湯原縣高級中學數(shù)學高一下期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點和點,是直線上的一點,則的最小值是()A. B. C. D.2.在公比為2的等比數(shù)列中,,則等于()A.4 B.8 C.12 D.243.若線性方程組的增廣矩陣是5b1102bA.1 B.2 C.3 D.44.如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是()①;②;③與平面所成的角為;④四面體的體積為.A.個 B.個 C.個 D.個5.“”是“直線:與直線:垂直”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.在等差數(shù)列an中,a1=1,aA.13 B.16 C.32 D.357.在正項等比數(shù)列中,,則()A. B. C. D.8.在平行四邊形中,,,則點的坐標為()A. B. C. D.9.已知數(shù)列的前項和為,直線與圓:交于兩點,且.記,其前項和為,若存在,使得有解,則實數(shù)取值范圍是()A. B. C. D.10.設等差數(shù)列的前n項和為,若,則()A.3 B.4 C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.(理)已知函數(shù),若對恒成立,則的取值范圍為.12.函數(shù)的定義域為____________.13.計算:________14.若是三角形的內(nèi)角,且,則等于_____________.15.已知當時,函數(shù)(且)取得最小值,則時,的值為__________.16.已知關(guān)于兩個隨機變量的一組數(shù)據(jù)如下表所示,且成線性相關(guān),其回歸直線方程為,則當變量時,變量的預測值應該是_________.234564671013三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖是某設計師設計的型飾品的平面圖,其中支架,,兩兩成,,,且.現(xiàn)設計師在支架上裝點普通珠寶,普通珠寶的價值為,且與長成正比,比例系數(shù)為(為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價值為,且與的面積成正比,比例系數(shù)為.設,.(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;(2)求的最大值及相應的的值.18.在中,角所對的邊分別為,,,,為的中點.(1)求的長;(2)求的值.19.已知數(shù)列的前項和為,點在直線上.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.已知函數(shù)為奇函數(shù),且,其中,.(1)求,的值.(2)若,,求的值.21.如圖,在中,點在邊上,,,.(1)求邊的長;(2)若的面積是,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

求出A關(guān)于直線l:的對稱點為C,則BC即為所求【詳解】如下圖所示:點,關(guān)于直線l:的對稱點為C(0,2),連接BC,此時的最小值為故選D.【點睛】本題考查的知識點是兩點間距離公式的應用,難度不大,屬于中檔題.2、D【解析】

由等比數(shù)列的性質(zhì)可得,可求出,則答案可求解.【詳解】等比數(shù)列的公比為2,由,即,所以舍所以故選:D【點睛】本題考查等比數(shù)列的性質(zhì)和通項公式的應用,屬于基礎題.3、C【解析】

由題意得5×3421+【詳解】由題意得5×3421+解得b1則b2【點睛】本題主要考查了線性方程組的解法,以及增廣矩陣的概念,考查運算能力,屬于中檔題.4、B【解析】

根據(jù)題意,依次分析命題:對于①,可利用反證法說明真假;對于②,為等腰直角三角形,平面,得平面,根據(jù)勾股定理逆定理可知;對于③,由與平面所成的角為知真假;對于④,利用等體積法求出所求體積進行判定即可,綜合可得答案.【詳解】在四邊形中,,,則,可得,由,若,且,可得平面,平面,,這與矛盾,故①不正確;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正確;由②知平面,則直線與平面所成的角為,且有,,則為等腰直角三角形,且,則.故③不正確;四面體的體積為,故④不正確.故選:B.【點睛】本題主要考查了直線與平面所成的角,以及三棱錐的體積的計算,考查了空間想象能力,推理論證能力,解題的關(guān)鍵是須對每一個進行逐一判定.5、A【解析】試題分析:由題意得,直線與直線垂直,則,解得或,所以“”是“直線與直線垂直”的充分不必要條件,故選A.考點:兩條直線的位置關(guān)系及充分不必要條件的判定.6、D【解析】

直接利用等差數(shù)列的前n項和公式求解.【詳解】數(shù)列an的前5項和為5故選:D【點睛】本題主要考查等差數(shù)列的前n項和的計算,意在考查學生對該知識的理解掌握水平,屬于基礎題.7、D【解析】

結(jié)合對數(shù)的運算,得到,即可求解.【詳解】由題意,在正項等比數(shù)列中,,則.故選:D.【點睛】本題主要考查了等比數(shù)列的性質(zhì),以及對數(shù)的運算求值,其中解答中熟記等比數(shù)列的性質(zhì),合理應用對數(shù)的運算求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎題.8、A【解析】

先求,再求,即可求D坐標【詳解】,∴,則D(6,1)故選A【點睛】本題考查向量的坐標運算,熟記運算法則,準確計算是關(guān)鍵,是基礎題9、D【解析】

根據(jù)題意,先求出弦長,再表示出,得到,求出數(shù)列的通項公式,再表示出,用錯位相減求和求出,再求解即可.【詳解】根據(jù)題意,圓的半徑,圓心到直線的距離,所以弦長,所以,當時,,所以,時,,所以,得,所以數(shù)列是以為首項,為公比的等比數(shù)列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因為,所以,所以.故選:D【點睛】本題主要考查求圓的弦長、由和求數(shù)列通項、錯位相減求數(shù)列的和和解不等式有解的情況,考查學生的分析轉(zhuǎn)化能力和計算能力,屬于難題.10、C【解析】

由又,可得公差,從而可得結(jié)果.【詳解】是等差數(shù)列又,∴公差,,故選C.【點睛】本題主要考查等差數(shù)列的通項公式與求和公式的應用,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:函數(shù)要使對恒成立,只要小于或等于的最小值即可,的最小值是0,即只需滿足,解得.考點:恒成立問題.12、【解析】

先將和分別解出來,然后求交集即可【詳解】要使,則有且由得由得因為所以原函數(shù)的定義域為故答案為:【點睛】解三角不等式的方法:1.在單位圓中利用三角函數(shù)線,2.利用三角函數(shù)的圖像13、【解析】

用正弦、正切的誘導公式化簡求值即可.【詳解】.【點睛】本題考查了正弦、正切的誘導公式,考查了特殊角的正弦值和正切值.14、【解析】∵是三角形的內(nèi)角,且,∴故答案為點睛:本題是一道易錯題,在上,,分兩種情況:若,則;若,則有兩種情況銳角或鈍角.15、3【解析】

先根據(jù)計算,化簡函數(shù),再根據(jù)當時,函數(shù)取得最小值,代入計算得到答案.【詳解】或當時,函數(shù)取得最小值:或(舍去)故答案為3【點睛】本題考查了三角函數(shù)的化簡,輔助角公式,函數(shù)的最值,綜合性較強,意在考查學生的綜合應用能力和計算能力.16、21.2【解析】

計算出,,可知回歸方程經(jīng)過樣本中心點,從而求得,代入可得答案.【詳解】由表中數(shù)據(jù)知,,,線性回歸直線必過點,所以將,代入回歸直線方程中,得,所以當時,.【點睛】本題主要考查回歸方程的相關(guān)計算,難度很小.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)();(2),的最大值是.【解析】試題分析:(1)運用題設和實際建立函數(shù)關(guān)系并確定定義域;(2)運用基本不等式求函數(shù)的最值和取得最值的條件.試題解析:(1)因為,,,由余弦定理,,解得,由,得.又,得,解得,所以的取值范圍是.(2),,則,設,則.當且僅當即取等號,此時取等號,所以當時,的最大值是.考點:閱讀理解能力和數(shù)學建模能力、基本不等式及在解決實際問題中的靈活運用.【易錯點晴】應用題是江蘇高考每年必考的重要題型之一,也是歷屆高考失分較多的題型.解答這類問題的關(guān)鍵是提高考生的閱讀理解能力和數(shù)學建模能力,以及抽象概括能力.解答好這類問題要過:“審題、理解題意、建立數(shù)學模型、求解數(shù)學模型、作答”這五個重要環(huán)節(jié),其中審題關(guān)要求反復閱讀問題中提供的一些信息,并將其與學過的數(shù)學模型進行聯(lián)系,為建構(gòu)數(shù)學模型打下基礎,最后的作答也是必不可少的重要環(huán)節(jié)之一,應用題的解答最后一定要依據(jù)題設中提供的問題做出合理的回答,這也是失分較多一個環(huán)節(jié).18、(1).(2)【解析】

(1)在中分別利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【詳解】解:(1)在中,由余弦定理得,∴,解得∵為的中點,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【點睛】本題考查解三角形中的正余弦定理的運用,難度較易.對于給定圖形的解三角形問題,一定要注意去結(jié)合圖形去分析.19、(1)(2)【解析】

(1)先由題意得到,求出,再由,作出,得到數(shù)列為等比數(shù)列,進而可求出其通項公式;(2)先由(1)得到,再由錯位相減法,即可求出結(jié)果.【詳解】解:(1)由題可得.當時,,即.由題設,,兩式相減得.所以是以2為首項,2為公比的等比數(shù)列,故.(2)由(1)可得,所以,.兩邊同乘以得.上式右邊錯位相減得.所以.化簡得.【點睛】本題主要考查求數(shù)列的通項公式,以及數(shù)列的前項和,熟記等比數(shù)列的通項公式與求和公式,以及錯位相減法求數(shù)列的和即可,屬于??碱}型.20、(1);(2).【解析】試題分析:(1)先根據(jù)奇函數(shù)性質(zhì)得y2=cos(2x+θ)為奇函數(shù),解得θ=,再根據(jù)解得a(2)根據(jù)條件化簡得sinα=,根據(jù)同角三角函數(shù)關(guān)系得cosα,最后根據(jù)兩角和正弦公式求sin的值試題解析:(1)因為f(x)=(a+2cos2x)cos(2x+θ)是奇函數(shù),而y1=a+2cos2x為偶函數(shù),所以y2=cos(2x+θ)為奇函數(shù),由θ∈(0,π),得θ=,所以f(x)=-sin2x·(a+2cos2x),由f=0得-(a+1)=0,即a=-1.(2)由(1)得f(x)=-sin4x,因為f=-sinα=-,即sinα=,又α∈,從而cosα=-,所以sin=sinαcos+cosαsin=×+×=.21、(1)2;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論