版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市市西中2024屆數(shù)學高一下期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,直角的斜邊長為2,,且點分別在軸,軸正半軸上滑動,點在線段的右上方.設(shè),(),記,,分別考察的所有運算結(jié)果,則()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值2.函數(shù)的圖像大致為()A. B. C. D.3.已知向量,滿足,,且在方向上的投影是-1,則實數(shù)()A.1 B.-1 C.2 D.-24.若函數(shù),則()A.9 B.1 C. D.05.()A.4 B. C.1 D.26.如圖的折線圖為某小區(qū)小型超市今年一月份到五月份的營業(yè)額和支出數(shù)據(jù)(利潤=營業(yè)額-支出),根據(jù)折線圖,下列說法中正確的是()A.該超市這五個月中,利潤隨營業(yè)額的增長在增長B.該超市這五個月中,利潤基本保持不變C.該超市這五個月中,三月份的利潤最高D.該超市這五個月中的營業(yè)額和支出呈正相關(guān)7.已知,都是實數(shù),那么“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形9.已知,則角的終邊所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知圓,圓,則圓與圓的位置關(guān)系是()A.相離 B.相交 C.外切 D.內(nèi)切二、填空題:本大題共6小題,每小題5分,共30分。11.已知{}是等差數(shù)列,是它的前項和,且,則____.12.已知x、y、z∈R,且,則的最小值為.13.已知為直線上一點,過作圓的切線,則切線長最短時的切線方程為__________.14.中,三邊所對的角分別為,若,則角______.15.一個圓柱和一個圓錐的底面直徑和它們的高都與某一個球的直徑相等,這時圓柱、圓錐、球的體積之比為.16.已知直線與軸、軸相交于兩點,點在圓上移動,則面積的最大值和最小值之差為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量=,=,=,為坐標原點.(1)若△為直角三角形,且∠為直角,求實數(shù)的值;(2)若點、、能構(gòu)成三角形,求實數(shù)應滿足的條件.18.中,內(nèi)角,,所對的邊分別是,,,已知.(1)求角的大小;(2)設(shè),的面積為,求的值.19.已知數(shù)列滿足,數(shù)列滿足,其中為的前項和,且(1)求數(shù)列和的通項公式(2)求數(shù)列的前項和.20.一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機抽取卡片.(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.21.如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F(xiàn)是BE的中點,求證:(1)平面ABC;(2)平面EDB.(3)求幾何體的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
設(shè),用表示出,根據(jù)的取值范圍,利用三角函數(shù)恒等變換化簡,進而求得最值的情況.【詳解】依題意,所以.設(shè),則,所以,,所以,當時,取得最大值為.,所以,所以,當時,有最小值為.故選B.【點睛】本小題主要考查平面向量數(shù)量積的坐標運算,考查三角函數(shù)化簡求值,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.2、A【解析】
先判斷函數(shù)為偶函數(shù)排除;再根據(jù)當時,,排除得到答案.【詳解】,偶函數(shù),排除;當時,,排除故選:【點睛】本題考查了函數(shù)圖像的識別,通過函數(shù)的奇偶性和特殊函數(shù)點可以排除選項快速得到答案.3、A【解析】
由投影的定義計算.【詳解】由題意,解得.故選:A.【點睛】本題考查向量數(shù)量積的幾何意義,掌握向量投影的定義是解題關(guān)鍵.4、B【解析】
根據(jù)的解析式即可求出,進而求出的值.【詳解】∵,∴,故,故選B.【點睛】本題主要考查分段函數(shù)的概念,以及已知函數(shù)求值的方法,屬于基礎(chǔ)題.5、A【解析】
分別利用和差公式計算,相加得答案.【詳解】故答案為A【點睛】本題考查了正切的和差公式,意在考查學生的計算能力.6、D【解析】
根據(jù)折線圖,分析出超市五個月中利潤的情況以及營業(yè)額和支出的相關(guān)性.【詳解】對于A選項,五個月的利潤依次為:,其中四月比三月是下降的,故A選項錯誤.對于B選項,五月的月份是一月和四月的兩倍,說明利潤有比較大的波動,故B選項錯誤.對于C選項,五個月的利潤依次為:,所以五月的利潤最高,故C選項錯誤.對于D選項,根據(jù)圖像可知,超市這五個月中的營業(yè)額和支出呈正相關(guān),故D選項正確.故選:D【點睛】本小題主要考查折線圖的分析與理解,屬于基礎(chǔ)題.7、D【解析】;,與沒有包含關(guān)系,故為“既不充分也不必要條件”.8、B【解析】
利用正弦定理結(jié)合條件,得到,再由,結(jié)合余弦定理,得到,從而得到答案.【詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因為,所以,由余弦定理得.為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【點睛】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.9、D【解析】由可知:則的終邊所在的象限為第四象限故選10、C【解析】,,,,,即兩圓外切,故選.點睛:判斷圓與圓的位置關(guān)系的常見方法(1)幾何法:利用圓心距與兩半徑和與差的關(guān)系.(2)切線法:根據(jù)公切線條數(shù)確定.(3)數(shù)形結(jié)合法:直接根據(jù)圖形確定二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)等差數(shù)列的性質(zhì)得,由此得解.【詳解】解:由題意可知,;同理。故.故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.12、【解析】試題分析:由柯西不等式,,因為.所以,當且僅當,即時取等號.所以的最小值為.考點:柯西不等式13、或【解析】
利用切線長最短時,取最小值找點:即過圓心作直線的垂線,求出垂足點.就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【詳解】設(shè)切線長為,則,所以當切線長取最小值時,取最小值,過圓心作直線的垂線,則點為垂足點,此時,直線的方程為,聯(lián)立,得,點的坐標為.①若切線的斜率不存在,此時切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡得,解得,此時,所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【點睛】本題考查過點的圓的切線方程的求解,考查圓的切線長相關(guān)問題,在過點引圓的切線問題時,要對直線的斜率是否存在進行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長,考查分析問題與解決問題的能力,屬于中等題.14、【解析】
利用余弦定理化簡已知條件,求得的值,進而求得的大小.【詳解】由得,由于,所以.【點睛】本小題主要考查余弦定理解三角形,考查特殊角的三角函數(shù)值,屬于基礎(chǔ)題.15、【解析】
設(shè)球的半徑為r,則,,,所以,故答案為.考點:圓柱,圓錐,球的體積公式.點評:圓柱,圓錐,球的體積公式分別為.16、15【解析】
解:設(shè)作出與已知直線平行且與圓相切的直線,
切點分別為,如圖所示
則動點C在圓上移動時,若C與點重合時,
△ABC面積達到最小值;而C與點重合時,△ABC面積達到最大值
∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點
可得∴△ABC面積的最大值和最小值之差為
,
其中分別為點、點到直線AB的距離
∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點
∴點、點到直線AB的距離之差等于圓的直徑,即
因此△ABC面積的最大值和最小值之差為
故答案為:15三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用向量的運算法則求出,,再利用向量垂直的充要條件列出方程求出m;(2)由題意得A,B,C三點不共線,則與不共線,列出關(guān)于m的不等式即可.【詳解】(1)因為=,=,=,所以,,若△ABC為直角三角形,且∠A為直角,則,∴3(2﹣m)+(1﹣m)=0,解得.(2)若點A,B,C能構(gòu)成三角形,則這三點不共線,即與不共線,得3(1﹣m)≠2﹣m,∴實數(shù)時,滿足條件.【點睛】本題考查向量垂直、向量共線的充要條件、利用向量共線解決三點共線、三點不共線等問題,屬于基礎(chǔ)題.18、(1)(2)【解析】
(1)利用正弦定理可將已知等式化為,利用兩角和差余弦公式展開整理可求得,根據(jù)可求得結(jié)果;(2)利用三角形面積公式可構(gòu)造方程求出;利用余弦定理可直接求得結(jié)果.【詳解】(1)由正弦定理可得:,即(2)設(shè)的面積為,則由得:,解得:由余弦定理得:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、三角形面積公式和余弦定理的應用;關(guān)鍵是能夠通過正弦定理將邊化角,得到角的一個三角函數(shù)值,從而根據(jù)角的范圍求得結(jié)果.19、(1);(2)【解析】
(1)由題意可得,由等差數(shù)列的通項公式可得;由數(shù)列的遞推式,結(jié)合等比數(shù)列的定義和通項公式可得;(2),運用數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式可得所求和.【詳解】解:(1)由,同乘以得,可知是以2為公差的等差數(shù)列,而,故;又,相減得,,可知是以為公比的等比數(shù)列,而,故;(2)因為,,,兩式相減得.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,考查化簡運算能力,屬于中檔題.20、(1)(2)【解析】
古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結(jié)合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點(1)由題意知本題是一個古典概型,試驗包含的所有事件是任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果,可以列舉出,而滿足條件的事件數(shù)字之和大于7的,可以從列舉出的結(jié)果中看出.(2)列舉出每次抽1張,連續(xù)抽取兩張全部可能的基本結(jié)果,而滿足條件的事件是兩次抽取中至少一次抽到數(shù)字3,從前面列舉出的結(jié)果中找出來.解:(Ⅰ)設(shè)A表示事件“抽取3張卡片上的數(shù)字之和大于或等于7”,任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4種,數(shù)字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3種,所以P(A)=.(Ⅱ)設(shè)B表示事件“至少一次抽到2”,第一次抽1張,放回后再抽取1張的全部可能結(jié)果為:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個事件B包含的結(jié)果有(1、2)(2、1)(2、2)(2、3)(2、4)(3、2)(4、2),共7個所以所求事件的概率為P(B)=.21、(1)見解析(2)見解析(3)【解析】
(1)如圖:證明得到答案.(2)證明得到答案.(3)幾何體轉(zhuǎn)化為,利用體積公式得到答案.【詳解】(1)∵F分別是BE的中點,取BA的中點M,∴FM∥EA,F(xiàn)MEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024店鋪轉(zhuǎn)讓合同范例
- 2024年采購合同變更協(xié)議
- 審計業(yè)務(wù)約定書模板
- 私人購房合同模板
- 深圳市房地產(chǎn)出租合同書
- 專業(yè)保證擔保合同大全
- 電視廣告代理權(quán)協(xié)議
- 住宅拆遷協(xié)議書
- 會計師會議協(xié)議書
- 2024版自愿離婚協(xié)議書寫作要點
- 電力公司臨時用工安全管理辦法(標準版)
- 山東省濟南市歷下區(qū)2023-2024學年五年級上學期月考英語試卷(12月份)
- 江蘇省高速公路設(shè)計優(yōu)化指導意見
- 2024人教版道德與法治三年級上冊第四單元:家是最溫暖的地方大單元整體教學設(shè)計
- 房子兩年后過戶協(xié)議書模板
- 畢業(yè)研究生登記表(適用于江蘇省)
- 北師大版小學數(shù)學二年級上冊期中試卷含參考答案
- 1.1地球的自轉(zhuǎn)和公轉(zhuǎn)(第一課時)
- 云南省2023年秋季學期期末普通高中學業(yè)水平考試信息技術(shù)(含答案解析)
- 1.1《堅持改革開放》課件3
- 2024年全國中級會計職稱之中級會計財務(wù)管理考試歷年考試題詳細參考解析
評論
0/150
提交評論