2023-2024學(xué)年烏海市重點中學(xué)數(shù)學(xué)高一下期末考試模擬試題含解析_第1頁
2023-2024學(xué)年烏海市重點中學(xué)數(shù)學(xué)高一下期末考試模擬試題含解析_第2頁
2023-2024學(xué)年烏海市重點中學(xué)數(shù)學(xué)高一下期末考試模擬試題含解析_第3頁
2023-2024學(xué)年烏海市重點中學(xué)數(shù)學(xué)高一下期末考試模擬試題含解析_第4頁
2023-2024學(xué)年烏海市重點中學(xué)數(shù)學(xué)高一下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年烏海市重點中學(xué)數(shù)學(xué)高一下期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為()A.6 B.8 C.12 D.182.已知,,那么等于()A. B. C. D.3.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻(xiàn)十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于若第一個單音的頻率為,則第八個單音的頻率為()A. B. C. D.4.已知點是直線上一動點,與是圓的兩條切線,為切點,則四邊形的最小面積為()A. B. C. D.5.是空氣質(zhì)量的一個重要指標(biāo),我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級,在之間空氣質(zhì)量為二級,在以上空氣質(zhì)量為超標(biāo).如圖是某地11月1日到10日日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是()A.這天中有天空氣質(zhì)量為一級 B.這天中日均值最高的是11月5日C.從日到日,日均值逐漸降低 D.這天的日均值的中位數(shù)是6.中,,,,則的面積等于()A. B. C.或 D.或7.已知,,且,則在方向上的投影為()A. B. C. D.8.當(dāng)點到直線的距離最大時,的值為()A. B.0 C. D.19.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg10.設(shè)的內(nèi)角所對邊分別為.則該三角形()A.無解 B.有一解 C.有兩解 D.不能確定二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足,則的前60項和為_____.12.一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出80人作進(jìn)一步調(diào)查,則在[1500,2000)(元)月收入段應(yīng)抽出人.13.已知正三棱錐的底面邊長為,側(cè)棱長為2,則該三棱錐的外接球的表面積_____.14.分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦.B.曼德爾布羅特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是________15.若當(dāng)時,不等式恒成立,則實數(shù)a的取值范圍是_____.16.設(shè),若用含的形式表示,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某工廠要制造A種電子裝置45臺,B種電子裝置55臺,需用薄鋼板給每臺裝置配一個外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個和5個,乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個和6個,求兩種薄鋼板各用多少張,才能使總的面積最?。?8.已知定點,點A在圓上運動,M是線段AB上的一點,且,求出點M所滿足的方程,并說明方程所表示的曲線是什么.19.某高中為了選拔學(xué)生參加“全國高中數(shù)學(xué)聯(lián)賽”,先在本校進(jìn)行初賽(滿分150分),隨機抽取100名學(xué)生的成績作為樣本,并根據(jù)他們的初賽成績得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中a的值;(2)根據(jù)頻率分布直方圖,估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù).20.某菜農(nóng)有兩段總長度為米的籬笆及,現(xiàn)打算用它們和兩面成直角的墻、圍成一個如圖所示的四邊形菜園(假設(shè)、這兩面墻都足夠長)已知(米),,,設(shè),四邊形的面積為.(1)將表示為的函數(shù),并寫出自變量的取值范圍;(2)求出的最大值,并指出此時所對應(yīng)的值.21.經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關(guān)系:.(1)在該時段內(nèi),當(dāng)汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)(2)為保證在該時段內(nèi)車流量至少為10千輛/小時,則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由直方圖可得分布在區(qū)間第一組與第二組共有21人,分布在區(qū)間第一組與第二組的頻率分別為1.24,1.16,所以第一組有12人,第二組8人,第三組的頻率為1.36,所以第三組的人數(shù):18人,第三組中沒有療效的有6人,第三組中有療效的有12人.考點:頻率分布直方圖2、B【解析】

首先求出題中,,之間的關(guān)系,然后利用正切的和角公式求解即可.【詳解】由題知,,所以.故選:B.【點睛】本題考查了正切的和角公式,屬于基礎(chǔ)題.3、B【解析】

根據(jù)等比數(shù)列通項公式,求得第八個單音的頻率.【詳解】根據(jù)等比數(shù)列通項公式可知第八個單音的頻率為.故選:B.【點睛】本小題主要考查等比數(shù)列的通項公式,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.4、A【解析】

利用當(dāng)與直線垂直時,取最小值,并利用點到直線的距離公式計算出的最小值,然后利用勾股定理計算出、的最小值,最后利用三角形的面積公式可求出四邊形面積的最小值.【詳解】如下圖所示:由切線的性質(zhì)可知,,,且,,當(dāng)取最小值時,、也取得最小值,顯然當(dāng)與直線垂直時,取最小值,且該最小值為點到直線的距離,即,此時,,四邊形面積的最小值為,故選A.【點睛】本題考查直線與圓的位置關(guān)系,考查切線長的計算以及四邊形的面積,本題在求解切線長的最小值時,要抓住以下兩點:(1)計算切線長應(yīng)利用勾股定理,即以點到圓心的距離為斜邊,切線長與半徑為兩直角邊;(2)切線長取最小值時,點到圓心的距離也取到最小值.5、D【解析】

由折線圖逐一判斷各選項即可.【詳解】由圖易知:第3,8,9,10天空氣質(zhì)量為一級,故A正確,11月5日日均值為82,顯然最大,故B正確,從日到日,日均值分別為:82,73,58,34,30,逐漸降到,故C正確,中位數(shù)是,所以D不正確,故選D.【點睛】本題考查了頻數(shù)折線圖,考查讀圖,識圖,用圖的能力,考查中位數(shù)的概念,屬于基礎(chǔ)題.6、D【解析】

先根據(jù)余弦定理求AC,再根據(jù)面積公式得結(jié)果.【詳解】因為,所以或2,因此的面積等于或等于,選D.【點睛】本題考查余弦定理與三角形面積公式,考查基本求解能力,屬基礎(chǔ)題.7、C【解析】

通過數(shù)量積計算出夾角,然后可得到投影.【詳解】,,即,,在方向上的投影為,故選C.【點睛】本題主要考查向量的幾何背景,建立數(shù)量積方程是解題的關(guān)鍵,難度不大.8、C【解析】直線過定點Q(2,1),所以點到直線的距離最大時PQ垂直直線,即,選C.9、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.10、C【解析】

利用正弦定理以及大邊對大角定理求出角,從而判斷出該三角形解的個數(shù).【詳解】由正弦定理得,所以,,,,或,因此,該三角形有兩解,故選C.【點睛】本題考查三角形解的個數(shù)的判斷,解題時可以充分利用解的個數(shù)的等價條件來進(jìn)行判斷,具體來講,在中,給定、、,該三角形解的個數(shù)判斷如下:(1)為直角或鈍角,,一解;,無解;(2)為銳角,或,一解;,兩解;,無解.二、填空題:本大題共6小題,每小題5分,共30分。11、1830【解析】

由題意可得,,,,,,…,,變形可得,,,,,,,,…,利用數(shù)列的結(jié)構(gòu)特征,求出的前60項和.【詳解】解:,∴,,,,,,…,,∴,,,,,,,,…,從第一項開始,依次取2個相鄰奇數(shù)項的和都等于2,從第二項開始,依次取2個相鄰偶數(shù)項的和構(gòu)成以8為首項,以16為公差的等差數(shù)列,的前60項和為,故答案為:.【點睛】本題主要考查遞推公式的應(yīng)用,考查利用構(gòu)造等差數(shù)列求數(shù)列的前項和,屬于中檔題.12、16【解析】試題分析:由頻率分布直方圖知,收入在1511--2111元之間的概率為1.1114×511=1.2,所以在[1511,2111)(元)月收入段應(yīng)抽出81×1.2=16人。考點:?頻率分布直方圖的應(yīng)用;?分層抽樣。13、.【解析】

由題意推出球心O到四個頂點的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.【詳解】如圖,∵正三棱錐A﹣BCD中,底面邊長為,底面外接圓半徑為側(cè)棱長為2,BE=1,在三角形ABE中,根據(jù)勾股定理得到:高AE得到球心O到四個頂點的距離相等,O點在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半徑為,表面積為:故答案為.【點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.14、【解析】

觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關(guān)系即可.【詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數(shù)均為前兩行之和.即.故第1到第13行中實心圓點的個數(shù)分別為:.故答案為:【點睛】本題主要考查了遞推數(shù)列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關(guān)系,屬于中等題型.15、【解析】

用換元法把不等式轉(zhuǎn)化為二次不等式.然后用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.【詳解】設(shè),是增函數(shù),當(dāng)時,,不等式化為,即,不等式在上恒成立,時,顯然成立,,對上恒成立,由對勾函數(shù)性質(zhì)知在是減函數(shù),時,,∴,即.綜上,.故答案為:.【點睛】本題考查不等式恒成立問題,解題方法是轉(zhuǎn)化與化歸,首先用換元法化指數(shù)型不等式為一元二次不等式,再用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.16、【解析】

兩邊取以5為底的對數(shù),可得,化簡可得,根據(jù)對數(shù)運算即可求出結(jié)果.【詳解】因為所以兩邊取以5為底的對數(shù),可得,即,所以,,故填.【點睛】本題主要考查了對數(shù)的運算法則,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、甲、乙兩種薄鋼板各5張,能保證制造A、B的兩種外殼的用量,同時又能使用料總面積最?。窘馕觥?/p>

本題可先將甲種薄鋼板設(shè)為x張,乙種薄鋼板設(shè)為y張,然后根據(jù)題意,得出兩個不等式關(guān)系,也就是3x+6y≥45、5x+6y≥55以及薄鋼板的總面積是z=2x+3y,然后通過線性規(guī)劃畫出圖像并求出總面積z=2x+3y的最小值,最后得出結(jié)果.【詳解】設(shè)甲種薄鋼板x張,乙種薄鋼板y張,則可做A種產(chǎn)品外殼3x+6y個,B種產(chǎn)品外殼5x+6y個,由題意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄鋼板的總面積是可行域的陰影部分如圖所示,其中l(wèi)1:3x+6y=45、l2:因目標(biāo)函數(shù)z=2x+3y在可行域上的最小值在區(qū)域邊界的A5此時z的最小值為2×5+3×5=25即甲、乙兩種薄鋼板各5張,能保證制造A、【點睛】(1)利用線性規(guī)劃求目標(biāo)函數(shù)最值的步驟①作圖:畫出約束條件所確定的平面區(qū)域和目標(biāo)函數(shù)所表示的平面直角坐標(biāo)系中的任意一條直線l;②平移:將l平行移動,以確定最優(yōu)解所對應(yīng)的點的位置.有時需要進(jìn)行目標(biāo)函數(shù)l和可行域邊界的斜率的大小比較;③求值:解有關(guān)方程組求出最優(yōu)解的坐標(biāo),再代入目標(biāo)函數(shù),求出目標(biāo)函數(shù)的最值.(2)用線性規(guī)劃解題時要注意z的幾何意義.18、;方程所表示的曲線是以為圓心,為半徑的圓.【解析】

設(shè)出點的坐標(biāo),結(jié)合向量的關(guān)系式及圓的方程可求.【詳解】設(shè),,因為,所以;,,因為點A在圓上運動,所以;化簡得;方程所表示的曲線是以為圓心,為半徑的圓.【點睛】本題主要考查曲線方程的求解,相關(guān)點法是常用的方法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).19、(1)(2)平均數(shù)、中位數(shù)、眾數(shù)依次為80,81,80【解析】

(1)利用頻率分布直方圖的性質(zhì),列出方程,即可求解;(2)由頻率分布直方圖,結(jié)合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,即可求解.【詳解】(1)由頻率分布直方圖的性質(zhì),可得,解得.(2)由頻率分布直方圖,結(jié)合平均數(shù)、中位數(shù)、眾數(shù)的計算方法,可得平均數(shù)為:中位數(shù)為x,則,解得.根據(jù)眾數(shù)的概念,可得此頻率分布直方圖的眾數(shù)為:80,因此估計這次初賽成績的平均數(shù)、中位數(shù)、眾數(shù)依次為80

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論