2025屆浙江省五校高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2025屆浙江省五校高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2025屆浙江省五校高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2025屆浙江省五校高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2025屆浙江省五校高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆浙江省五校高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,且與的夾角為,則()A. B.2 C. D.142.某象棋俱樂部有隊員5人,其中女隊員2人,現(xiàn)隨機選派2人參加一個象棋比賽,則選出的2人中恰有1人是女隊員的概率為()A. B. C. D.3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B.C. D.4.在等比數(shù)列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.85.已知,則的值域為A. B. C. D.6.函數(shù),,若對任意,存在,使得成立,則實數(shù)m的取值范圍是()A. B. C. D.7.已知,向量,則向量()A. B. C. D.8.若函數(shù)的最小正周期為2,則()A.1 B.2 C. D.9.一個圓錐的表面積為,它的側(cè)面展開圖是圓心角為的扇形,該圓錐的母線長為()A. B.4 C. D.10.為了得到函數(shù)y=sin(2x-πA.向右平移π6個單位 B.向右平移πC.向左平移π6個單位 D.向左平移π二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)當(dāng)時,函數(shù)取得最大值,則______.12.已知變量和線性相關(guān),其一組觀測數(shù)據(jù)為,由最小二乘法求得回歸直線方程為.若已知,則______.13.在四面體ABCD中,平面ABC,,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.14.已知角的終邊上一點P的坐標(biāo)為,則____.15.已知向量,,,則_________.16.某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團和演講社團的情況,數(shù)據(jù)如下表所示(單位:人).參加書法社團未參加書法社團參加演講社團85未參加演講社團230若從該班隨機選l名同學(xué),則該同學(xué)至少參加上述一個社團的概率為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求函數(shù)的最小正周期;(2)設(shè)的內(nèi)角的對邊分別為,且,,,求的面積.18.如圖所示,是一個矩形花壇,其中米,米.現(xiàn)將矩形花壇擴建成一個更大的矩形花壇,要求:在上,在上,對角線過點,且矩形的面積小于150平方米.(1)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;(2)當(dāng)?shù)拈L度是多少時,矩形的面積最小?并求最小面積.19.已知,與的夾角為.(1)若,求;(2)若與垂直,求.20.已知,,(1)若,求;(2)求的最大值,并求出對應(yīng)的x的值.21.已知的外接圓的半徑為,內(nèi)角,,的對邊分別為,,,又向量,,且.(1)求角;(2)求三角形的面積的最大值并求此時的周長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

首先求出、,再根據(jù)計算可得;【詳解】解:,,又,且與的夾角為,所以.故選:A【點睛】本題考查平面向量的數(shù)量積以及運算律,屬于基礎(chǔ)題.2、B【解析】

直接利用概率公式計算得到答案.【詳解】故選:【點睛】本題考查了概率的計算,屬于簡單題.3、C【解析】

先通過三視圖找到幾何體原圖,再求幾何體的體積得解.【詳解】由題得該幾何體是一個邊長為4的正方體挖去一個圓錐(圓錐底面在正方體上表面上,圓錐頂部朝下),所以幾何體體積為.故選:C【點睛】本題主要考查三視圖還原幾何體原圖,考查組合體體積的計算,意在考查學(xué)生對這些知識的理解掌握水平.4、A【解析】,選A.5、C【解析】

利用求函數(shù)的周期為,計算即可得到函數(shù)的值域.【詳解】因為,,,因為函數(shù)的周期,所以函數(shù)的值域為,故選C.【點睛】本題考查函數(shù)的周期運算,及利用函數(shù)的周期性求函數(shù)的值域.6、D【解析】,當(dāng)時,對于∵對任意,存在,使得成立,,解得實數(shù)的取值范圍是.

故選D.【點睛】本題考查三角函數(shù)恒等變換,其中解題時問題轉(zhuǎn)化為求三角函數(shù)的值域并利用集合關(guān)系是解決問題的關(guān)鍵,7、A【解析】

由向量減法法則計算.【詳解】.故選A.【點睛】本題考查向量的減法法則,屬于基礎(chǔ)題.8、C【解析】

根據(jù)可求得結(jié)果.【詳解】由題意知:,解得:本題正確選項:【點睛】本題考查余弦型函數(shù)最小正周期的求解問題,屬于基礎(chǔ)題.9、B【解析】

設(shè)圓錐的底面半徑為,母線長為,利用扇形面積公式和圓錐表面積公式,求出圓錐的底面圓半徑和母線長.【詳解】設(shè)圓錐的底面半徑為,母線長為它的側(cè)面展開圖是圓心角為的扇形又圓錐的表面積為,解得:母線長為:本題正確選項:【點睛】本題考查了圓錐的結(jié)構(gòu)特征與應(yīng)用問題,關(guān)鍵是能夠熟練應(yīng)用扇形面積公式和圓錐表面積公式,是基礎(chǔ)題.10、A【解析】

根據(jù)函數(shù)平移變換的方法,由2x→2x-π3即2x→2(x-π【詳解】根據(jù)函數(shù)平移變換,由y=sin2x變換為只需將y=sin2x的圖象向右平移π6【點睛】本題主要考查了三角函數(shù)圖象的平移變換,解題關(guān)鍵是看自變量上的變化量,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當(dāng)x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.12、355【解析】

根據(jù)回歸直線必過樣本點的中心,根據(jù)橫坐標(biāo)結(jié)合回歸方程求出縱坐標(biāo)即可得解.【詳解】由題:,回歸直線方程為,所以,.故答案為:355【點睛】此題考查根據(jù)回歸直線方程求樣本點的中心的縱坐標(biāo),關(guān)鍵在于掌握回歸直線必過樣本點的中心,根據(jù)平均數(shù)求解.13、【解析】

易得四面體為長方體的一角,再根據(jù)長方體體對角線等于外接球直徑,再利用對角線公式求解即可.【詳解】因為四面體中,平面,且,.故四面體是以為一個頂點的長方體一角.設(shè)則因為四面體的外接球的表面積為,設(shè)其半徑為,故.解得.故四面體的體積.故答案為:【點睛】本題主要考查了長方體一角的四面體的外接球有關(guān)問題,需要注意長方體體對角線等于外接球直徑.屬于中檔題.14、【解析】

由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點到原點的距離,,由三角函數(shù)的定義可得,,,此時;故答案為.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.15、【解析】

根據(jù)向量平行交叉相乘相減等于0即可.【詳解】因為兩個向量平行,所以【點睛】本題主要考查了向量的平行,即,若則,屬于基礎(chǔ)題.16、【解析】

直接利用公式得到答案.【詳解】至少參加上述一個社團的人數(shù)為15故答案為【點睛】本題考查了概率的計算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用二倍角和輔助角公式可將函數(shù)整理為,利用求得結(jié)果;(2)由,結(jié)合的范圍可求得;利用兩角和差正弦公式和二倍角公式化簡已知等式,可求得;分別在和兩種情況下求解出各邊長,從而求得三角形面積.【詳解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即時,則:若,則由正弦定理可得:由余弦定理得:解得:綜上所述,的面積為:【點睛】本題考查正弦型函數(shù)的最小正周期、三角形面積的求解,涉及到正弦定理、余弦定理、三角形面積公式、兩角和差正弦公式、二倍角公式、輔助角公式的應(yīng)用,考查學(xué)生對于三角函數(shù)、三角恒等變換和解三角形知識的掌握.18、(1),;(2),.【解析】

(1)由可得,,∴.由,且,解得,∴函數(shù)的定義域為.(2)令,則,,當(dāng)且僅當(dāng)時,取最小值,故當(dāng)?shù)拈L度為米時,矩形花壇的面積最小,最小面積為96平方米.考點:1.分式不等式;2.均值不等式.19、(1);(2)【解析】

(1)根據(jù)向量共線,對向量的夾角分類討論,利用數(shù)量積公式即可完成求解;(2)根據(jù)向量垂直得到數(shù)量積為,再根據(jù)已知條件并借助數(shù)量積公式即可計算出的值.【詳解】(1)∵,∴與的夾角為或,當(dāng)時,,當(dāng)時,,綜上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夾角的范圍是,∴【點睛】本題考查根據(jù)向量的平行、垂直求解向量的夾角以及向量數(shù)量積公式的運用,難度較易.注意共線向量的夾角為或.20、(Ⅰ)(II)1,此時【解析】

(Ⅰ)根據(jù)平面向量的坐標(biāo)運算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐標(biāo)運算,利用模長公式和三角函數(shù)求出最大值.【詳解】解:(Ⅰ)計算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,當(dāng)cosx=1,即x=1kπ,k∈Z時,|+|取得最大值為1.【點睛】本題考查了平面向量的坐標(biāo)運算與數(shù)量積運算問題,是基礎(chǔ)題.21、(1).(2),周長為.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論