版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省寧德市福安第六中學(xué)2025屆高一下數(shù)學(xué)期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.2.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點(diǎn)()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向右平移個(gè)單位長(zhǎng)度 D.向左平移個(gè)單位長(zhǎng)度3.在中,內(nèi)角,,的對(duì)邊分別為,,,若,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.最大角為銳角的等腰三角形 D.最大角為鈍角的等腰三角形4.已知直線l過(guò)點(diǎn)且與直線垂直,則l的方程是()A. B.C. D.5.已知的頂點(diǎn)坐標(biāo)為,,,則邊上的中線的長(zhǎng)為()A. B. C. D.6.在空間中,可以確定一個(gè)平面的條件是()A.一條直線B.不共線的三個(gè)點(diǎn)C.任意的三個(gè)點(diǎn)D.兩條直線7.如圖所示,向量,則()A. B. C. D.8.已知向量、滿足,且,則為()A. B.6 C.3 D.9.設(shè)x、y滿足約束條件,則z=2x﹣y的最大值為()A.0 B.0.5 C.1 D.210.若關(guān)于x,y的方程組無(wú)解,則()A. B. C.2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于函數(shù),下列命題:①若存在,有時(shí),成立;②在區(qū)間上是單調(diào)遞增;③函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱圖象;④將函數(shù)的圖象向左平移個(gè)單位后將與的圖象重合.其中正確的命題序號(hào)__________12.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_(kāi)____.13.在中,,且,則.14.已知向量,,若,則__________.15.△ABC中,,,則=_____.16.已知數(shù)列滿足,(),則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,在處有一港口,兩艘海輪同時(shí)從港口處出發(fā)向正北方向勻速航行,海輪的航行速度為20海里/小時(shí),海輪的航行速度大于海輪.在港口北偏東60°方向上的處有一觀測(cè)站,1小時(shí)后在處測(cè)得與海輪的距離為30海里,且處對(duì)兩艘海輪,的視角為30°.(1)求觀測(cè)站到港口的距離;(2)求海輪的航行速度.18.設(shè)和是兩個(gè)等差數(shù)列,記(),其中表示,,這個(gè)數(shù)中最大的數(shù).已知為數(shù)列的前項(xiàng)和,,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求,,的值,并求數(shù)列的通項(xiàng)公式;(3)求數(shù)列前項(xiàng)和.19.為了了解高一學(xué)生的體能狀況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.(1)求第二小組的頻率;(2)求樣本容量;(3)若次數(shù)在110以上為達(dá)標(biāo),試估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為多少?20.如圖,在梯形中,,,,.(1)在中,求的長(zhǎng);(2)若的面積等于,求的長(zhǎng).21.如圖,已知等腰梯形中,是的中點(diǎn),,將沿著翻折成,使平面平面.(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)在線段上是否存在點(diǎn)P,使得平面,若存在,求出的值;若不存在,說(shuō)明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】令,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又令,所以有兩個(gè)零點(diǎn),因?yàn)?,,所以,且?dāng)時(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,選項(xiàng)C滿足條件.故選C.點(diǎn)睛:本題考查函數(shù)的解析式和圖象的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;已知函數(shù)的解析式識(shí)別函數(shù)圖象是高考常見(jiàn)題型,往往從定義域、奇偶性(對(duì)稱性)、單調(diào)性、最值及特殊點(diǎn)的符號(hào)進(jìn)行驗(yàn)證,逐一驗(yàn)證進(jìn)行排除.2、D【解析】
由圖象求得函數(shù)解析式的參數(shù),再利用誘導(dǎo)公式將異名函數(shù)化為同名函數(shù)根據(jù)圖象間平移方法求解.【詳解】由圖象可知,又,所以,又因?yàn)?,所以,所以,又因?yàn)?,又,所以所以又因?yàn)楣蔬xD.【點(diǎn)睛】本題考查由圖象確定函數(shù)的解析式和正弦函數(shù)和余弦函數(shù)圖象之間的平移,關(guān)鍵在于將異名函數(shù)化為同名函數(shù),屬于中檔題.3、D【解析】
先由余弦定理,結(jié)合題中條件,求出,再由,求出,進(jìn)而可得出三角形的形狀.【詳解】因?yàn)?,所以,,所?又,所以,則的形狀為最大角為鈍角的等腰三角形.故選D【點(diǎn)睛】本題主要考查三角形的形狀的判定,熟記余弦定理即可,屬于常考題型.4、A【解析】
直線2x–3y+1=0的斜率為則直線l的斜率為所以直線l的方程為故選A5、D【解析】
利用中點(diǎn)坐標(biāo)公式求得,再利用兩點(diǎn)間距離公式求得結(jié)果.【詳解】由,可得中點(diǎn)又本題正確選項(xiàng):【點(diǎn)睛】本題考查兩點(diǎn)間距離公式的應(yīng)用,關(guān)鍵是能夠利用中點(diǎn)坐標(biāo)公式求得中點(diǎn)坐標(biāo).6、B【解析】試題分析:根據(jù)平面的基本性質(zhì)及推論,即確定平面的幾何條件,即可知道答案.解:對(duì)于A.過(guò)一條直線可以有無(wú)數(shù)個(gè)平面,故錯(cuò);對(duì)于C.過(guò)共線的三個(gè)點(diǎn)可以有無(wú)數(shù)個(gè)平面,故錯(cuò);對(duì)于D.過(guò)異面的兩條直線不能確定平面,故錯(cuò);由平面的基本性質(zhì)及推論知B正確.故選B.考點(diǎn):平面的基本性質(zhì)及推論.7、A【解析】
根據(jù)平面向量的加法的幾何意義、平面向量的基本定理、平面向量數(shù)乘運(yùn)算的性質(zhì),結(jié)合進(jìn)行求解即可.【詳解】.故選:A【點(diǎn)睛】本題考查了平面向量基本定理及加法運(yùn)算的幾何意義,考查了平面向量數(shù)乘運(yùn)算的性質(zhì),屬于基礎(chǔ)題.8、A【解析】
先由可得,即可求得,再對(duì)平方處理,進(jìn)而求解【詳解】因?yàn)?所以,則,所以,則,故選:A【點(diǎn)睛】本題考查向量的模,考查向量垂直的數(shù)量積表示,考查運(yùn)算能力9、C【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,聯(lián)立,解得A(2,3),化目標(biāo)函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當(dāng)直線y=2x﹣z過(guò)A時(shí),直線在y軸上的截距最小,z有最大值為2×2﹣3=1.故選:C.【點(diǎn)評(píng)】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.10、A【解析】
由題可知直線與平行,再根據(jù)平行公式求解即可.【詳解】由題,直線與平行,故.故選:A【點(diǎn)睛】本題主要考查了二元一次方程組與直線間的位置關(guān)系,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解析】
根據(jù)題意,由于,根據(jù)函數(shù)周期為,可知①、若存在,有時(shí),成立;正確,對(duì)于②、在區(qū)間上是單調(diào)遞減;因此錯(cuò)誤,對(duì)于③、,函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱圖象,成立.對(duì)于④、將函數(shù)的圖象向左平移個(gè)單位后得到,與的圖象重合錯(cuò)誤,故答案為①③考點(diǎn):命題的真假點(diǎn)評(píng):主要是考查了三角函數(shù)的性質(zhì)的運(yùn)用,屬于基礎(chǔ)題.12、【解析】
由已知求得母線長(zhǎng),代入圓錐側(cè)面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長(zhǎng)l=,∴圓錐的側(cè)面積S=πrl=2π.故答案為:2π.【點(diǎn)睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.13、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或?3(舍去).考點(diǎn):1、正弦定理及余弦定理;2、三角形內(nèi)角和定理及兩角和的余弦公式.14、1【解析】由,得.即.解得.15、【解析】試題分析:三角形中,,由,得又,所以有正弦定理得即即A為銳角,由得,因此考點(diǎn):正余弦定理16、31【解析】
根據(jù)數(shù)列的首項(xiàng)及遞推公式依次求出、、……即可.【詳解】解:,故答案為:【點(diǎn)睛】本題考查利用遞推公式求出數(shù)列的項(xiàng),屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)海里;(2)速度為海里/小時(shí)【解析】
(1)由已知可知,所以在中,運(yùn)用余弦定理易得OA的長(zhǎng).(2)因?yàn)镃航行1小時(shí)到達(dá)C,所以知道OC的長(zhǎng)即可,即求BC的長(zhǎng).在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【詳解】(1)因?yàn)楹惖乃俣葹?0海里/小時(shí),所以1小時(shí)后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:解得:中,,,所以所以在中,由正弦定理知:,解得:所以答:船的速度為海里/小時(shí)【點(diǎn)睛】三角形中一般已知三個(gè)條件可求其他條件,用到的工具一般是余弦定理或者正弦定理.18、(1);(2),,,;(3)【解析】
(1)根據(jù)題意,化簡(jiǎn)得,運(yùn)用已知求公式,即可求解通項(xiàng)公式;(2)根據(jù)題意,寫出通項(xiàng),根據(jù)定義,令,可求解,,的值,再判斷單調(diào)遞減,可求數(shù)列的通項(xiàng)公式;(3)由(1)(2)的數(shù)列、的通項(xiàng)公式,代入數(shù)列中,運(yùn)用錯(cuò)位相減法求和.【詳解】(1)∵,∴,當(dāng)時(shí),,化簡(jiǎn)得,∴,當(dāng)時(shí),,,∵,∴,∴是首項(xiàng)為1,公差為2的等差數(shù)列,∴.(2),,,當(dāng)時(shí),,∴單調(diào)遞減,所以.(3)作差,得【點(diǎn)睛】本題考查(1)已知求公式;(2)數(shù)列的單調(diào)性;(3)錯(cuò)位相減法求和;考查計(jì)算能力,考查分析問(wèn)題解決問(wèn)題的能力,綜合性較強(qiáng),有一定難度.19、(1);(2);(3)%【解析】
(1)由于每個(gè)長(zhǎng)方形的面積即為本組的頻率,設(shè)第二小組的頻率為4,則解得第二小組的頻率為(2)設(shè)樣本容量為,則(3)由(1)和直方圖可知,次數(shù)在110以上的頻率為由此估計(jì)全體高一學(xué)生的達(dá)標(biāo)率為%20、(1);(2)【解析】
(1)首先利用同角三角函數(shù)的基本關(guān)系求出,再利用正弦定理求解即可.(2)求出梯形的高,再利用三角形的面積求解即可.【詳解】解:(1)在梯形中,,,,.可得,由正弦定理可得:.(2)過(guò)作,交的延長(zhǎng)線于則即梯形的高為,因?yàn)榈拿娣e等于,,,,【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,三角形面積公式的應(yīng)用,屬于中檔題.21、(Ⅰ)詳見(jiàn)解析;(Ⅱ)二面角的余弦值為;(Ⅲ)存在點(diǎn)P,使得平面,且.【解析】
試題分析:(I)根據(jù)直線與平面垂直的判定定理,需證明垂直平面內(nèi)的兩條相交直線.由題意易得四邊形是菱形,所以,從而,即,進(jìn)而證得平面.(Ⅱ)由(I)可知,、、兩兩互相垂直,故可以為軸,為軸,為軸建立空間直角坐標(biāo)系,利用空間向量即可求得二面角的余弦值.(Ⅲ)根據(jù)直線與平面平行的判定定理,只要能找到一點(diǎn)P使得PM平行平面內(nèi)的一條直線即可.由于,故可取線段中點(diǎn)P,中點(diǎn)Q,連結(jié).則,且.由此即可得四邊形是平行四邊形,從而問(wèn)題得證.試題解析:(I)由題意可知四邊形是平行四邊形,所以,故.又因?yàn)椋琈為AE的中點(diǎn)所以,即又因?yàn)?,所以四邊形是平行四邊形.所以故.因?yàn)槠矫嫫矫?,平面平面,平面所以平面.因?yàn)槠矫?,所以.因?yàn)?,、平面,所以平面.(Ⅱ)以為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,.平面的法向量為.設(shè)平面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024芒果種植基地?zé)o人機(jī)噴灑農(nóng)藥服務(wù)合同3篇
- 儀器設(shè)備采購(gòu)合同5篇
- 經(jīng)濟(jì)法關(guān)于大學(xué)生就業(yè)維權(quán)方面
- 贊助合同模板(5篇)
- 山東特殊教育職業(yè)學(xué)院《醫(yī)學(xué)基本技能》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度政府投資項(xiàng)目財(cái)務(wù)監(jiān)管代理合同3篇
- 鐘山職業(yè)技術(shù)學(xué)院《商務(wù)英語(yǔ)視聽(tīng)說(shuō)(4)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年礦山石料直供采購(gòu)協(xié)議綱要版B版
- 2025年度新疆棉花采摘機(jī)械化作業(yè)合同范本3篇
- 南京師范大學(xué)泰州學(xué)院《口腔臨床醫(yī)學(xué)概論(口腔修復(fù)學(xué))》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年初中七年級(jí)上學(xué)期數(shù)學(xué)期末綜合卷(人教版)含答案
- 2024-2025學(xué)年北京市朝陽(yáng)區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 四年級(jí)數(shù)學(xué)(除數(shù)是兩位數(shù))計(jì)算題專項(xiàng)練習(xí)及答案
- 辦理落戶新生兒委托書(shū)模板
- 四川省綿陽(yáng)市涪城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期1月期末歷史試卷(含答案)
- 2025年山東水發(fā)集團(tuán)限公司社會(huì)招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《湖南省房屋建筑和市政工程消防質(zhì)量控制技術(shù)標(biāo)準(zhǔn)》
- 施工現(xiàn)場(chǎng)環(huán)境因素識(shí)別、評(píng)價(jià)及環(huán)境因素清單、控制措施
- 2024年醫(yī)藥行業(yè)年終總結(jié).政策篇 易聯(lián)招采2024
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 兒科護(hù)士述職報(bào)告2024
評(píng)論
0/150
提交評(píng)論