




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省定西市岷縣二中2025屆高一數(shù)學第二學期期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,水平放置的三棱柱的側棱長和底邊長均為4,且側棱垂直于底面,正視圖是邊長為4的正方形,則三棱柱的左視圖面積為()A. B. C. D.2.已知直線yx+2,則其傾斜角為()A.60° B.120° C.60°或120° D.150°3.過正方形的頂點,作平面,若,則平面和平面所成的銳二面角的大小是A. B.C. D.4.函數(shù)的最小值為(
)A.6 B.7 C.8 D.95.如圖所示,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率是()A. B. C. D.6.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B. C. D.7.設雙曲線的左右焦點分別是,過的直線交雙曲線的左支于兩點,若,且,則雙曲線的離心率是()A. B. C. D.8.直線的斜率是()A. B. C. D.9.某廠家生產(chǎn)甲、乙、丙三種不同類型的飲品?產(chǎn)量之比為2:3:4.為檢驗該廠家產(chǎn)品質量,用分層抽樣的方法抽取一個容量為72的樣本,則樣本中乙類型飲品的數(shù)量為A.16 B.24 C.32 D.4810.若直線x+(1+m)y-2=0與直線mx+2y+4=0平行,則m的值是()A.1 B.-2 C.1或-2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.的值為__________.12.下列結論中正確的是______.(1)將圖像向左平移個單位,再將所有點的橫坐標擴大為原來的倍,得到的圖像;(2)將圖像上所有點的橫坐標擴大為原來的倍,再將圖像向左平移個單位,得到的圖像;(3)將圖像上所有點的橫坐標擴大為原來的倍,再將圖像向左平移個單位,得到的圖像;(4)將圖像上所有點的橫坐標變?yōu)樵瓉淼谋?,再將圖像向左平移個單位,得到的圖像;(5)將圖像向左平移個單位,再將所有點的橫坐標擴大為原來的倍,得到的圖像;13.經(jīng)過點,且在兩坐標軸上的截距之和為2的直線的一般式方程為________.14.一個社會調查機構就某地居民的月收入調查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,要從這10000人中再用分層抽樣方法抽出80人作進一步調查,則在[1500,2000)(元)月收入段應抽出人.15.向邊長為的正方形內隨機投粒豆子,其中粒豆子落在到正方形的頂點的距離不大于的區(qū)域內(圖中陰影區(qū)域),由此可估計的近似值為______.(保留四位有效數(shù)字)16.已知一個幾何體的三視圖如圖所示,其中正視圖是等腰直角三角形,則該幾何體的體積為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),其圖象與軸相鄰的兩個交點的距離為.(1)求函數(shù)的解析式;(2)若將的圖象向左平移個長度單位得到函數(shù)的圖象恰好經(jīng)過點,求當取得最小值時,在上的單調區(qū)間.18.已知函數(shù)(其中,)的最小正周期為,且圖象經(jīng)過點(1)求函數(shù)的解析式:(2)求函數(shù)的單調遞增區(qū)間.19.在中,角,,所對的邊分別為,,,且,.(1)求證:是銳角三角形;(2)若,求的面積.20.“中國人均讀書本(包括網(wǎng)絡文學和教科書),比韓國的本、法國的本、日本的本、猶太人的本少得多,是世界上人均讀書最少的國家”,這個論斷被各種媒體反復引用.出現(xiàn)這樣統(tǒng)計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內看書人員進行年齡調查,隨機抽取了一天名讀書者進行調查,將他們的年齡分成段:,,,,,后得到如圖所示的頻率分布直方圖.問:(1)估計在這名讀書者中年齡分布在的人數(shù);(2)求這名讀書者年齡的平均數(shù)和中位數(shù);(3)若從年齡在的讀書者中任取名,求這兩名讀書者年齡在的人數(shù)恰為的概率.21.已知的三個頂點分別為,,,求:(1)邊上的高所在直線的方程;(2)的外接圓的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)題意,得出該幾何體左視圖的高和寬的長度,求出它的面積,即可求解.【詳解】根據(jù)題意,該幾何體左視圖的高是正視圖的高,所以左視圖的高為,又由左視圖的寬是俯視圖三角形的底邊上的高,所以左視圖的寬為,所以該幾何體的左視圖的面積為,故選A.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解.2、B【解析】
根據(jù)直線方程求出斜率,根據(jù)斜率和傾斜角之間的關系即可求出傾斜角.【詳解】由已知得直線的斜率,則傾斜角為120°,故選:B.【點睛】本題考查斜率和傾斜角的關系,是基礎題.3、B【解析】法一:建立如圖(1)所示的空間直角坐標系,不難求出平面APB與平面PCD的法向量分別為n1=(0,1,0),n2=(0,1,1),故平面ABP與平面CDP所成二面角的余弦值為=,故所求的二面角的大小是45°.法二:將其補成正方體.如圖(2),不難發(fā)現(xiàn)平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小為45°.4、C【解析】
直接利用均值不等式得到答案.【詳解】,時等號成立.故答案選C【點睛】本題考查了均值不等式,屬于簡單題.5、A【解析】
根據(jù)題意,分析可得,由三角形面積公式計算可得△DEF和△ACF的面積,進而可得△ABC的面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,為等邊三角形,則,則,中,,其面積,中,,,其面積,則的面積,故在大等邊三角形中隨機取一點,則此點取自小等邊三角形的概率,故選:A.【點睛】本題主要考查幾何概型中的面積類型,基本方法是:分別求得構成事件A的區(qū)域面積和試驗的全部結果所構成的區(qū)域面積,兩者求比值,即為概率.6、C【解析】
利用正方體中,,將問題轉化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關系,找到(或構造)所求角所在的三角形;③求出三邊或三邊比例關系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應的余弦取絕對值即為直線所成角的余弦值.7、C【解析】,則,所以,,則,所以,故選C。點睛:離心率問題關鍵是利用圓錐曲線的幾何性質,以及三角形的幾何關系來解決,本題中,由雙曲線的幾何性質,可以將圖中的各邊長都表示出來,再利用同一個角在兩個三角形中的余弦定理,就可以得到的等量關系,求出離心率。8、A【解析】
一般式直線方程的斜率為.【詳解】直線的斜率為.故選A【點睛】此題考察一般直線方程的斜率,屬于較易基礎題目9、B【解析】
根據(jù)分層抽樣各層在總體的比例與在樣本的比例相同求解.【詳解】因為分層抽樣總體和各層的抽樣比例相同,所以各層在總體的比例與在樣本的比例相同,所以樣本中乙類型飲品的數(shù)量為.故選B.【點睛】本題考查分層抽樣,依據(jù)分層抽樣總體和各層的抽樣比例相同.10、A【解析】
分類討論直線的斜率情況,然后根據(jù)兩直線平行的充要條件求解即可得到所求.【詳解】①當時,兩直線分別為和,此時兩直線相交,不合題意.②當時,兩直線的斜率都存在,由直線平行可得,解得.綜上可得.故選A.【點睛】本題考查兩直線平行的等價條件,解題的關鍵是將問題轉化為對直線斜率存在性的討論.也可利用以下結論求解:若,則且或且.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由反余弦可知,由此可計算出的值.【詳解】.故答案為:.【點睛】本題考查正切值的計算,涉及反余弦的應用,求出反余弦值是關鍵,考查計算能力,屬于基礎題.12、(1)(3)【解析】
根據(jù)三角函數(shù)圖像伸縮變換與平移變換的原則,逐項判斷,即可得出結果.【詳解】(1)將圖像向左平移個單位,得到的圖像,再將所有點的橫坐標擴大為原來的倍,得到的圖像;(1)正確;(2)將圖像上所有點的橫坐標擴大為原來的倍,得到的圖像,再將圖像向左平移個單位,得到的圖像;(2)錯;(3)將圖像上所有點的橫坐標擴大為原來的倍,得到的圖像,再將圖像向左平移個單位,得到的圖像;(3)正確;(4)將圖像上所有點的橫坐標變?yōu)樵瓉淼谋?,得到的圖像,再將圖像向左平移個單位,得到的圖像;(4)錯;(5)將圖像向左平移個單位,得到的圖像,再將所有點的橫坐標擴大為原來的倍,得到的圖像;(5)錯;故答案為(1)(3)【點睛】本題主要考查三角函數(shù)的圖像變換,熟記圖像變換原則即可,屬于??碱}型.13、【解析】
由題可知,直線在x上軸截距為-3,再利用截距式可直接求得直線方程【詳解】∵直線過(0,5),∴直線在y軸上的截距為5,又直線在兩坐標軸上的截距之和為2,∴直線在x軸上的截距為2-5=-3∴直線方程為,即5x-3y+15=0【點睛】直線方程有五種基本形式,在只知道橫縱截距的情況下,截距式是最快捷的一種方式14、16【解析】試題分析:由頻率分布直方圖知,收入在1511--2111元之間的概率為1.1114×511=1.2,所以在[1511,2111)(元)月收入段應抽出81×1.2=16人??键c:?頻率分布直方圖的應用;?分層抽樣。15、3.1【解析】
根據(jù)已知條件求出滿足條件的正方形的面積,及到頂點的距離不大于1的區(qū)域(圖中陰影區(qū)域)的面積比值等于頻率即可求出答案.【詳解】依題意得,正方形的面積,陰影部分的面積,故落在到正方形的頂點的距離不大于1的區(qū)域內(圖中陰影區(qū)域)的概率,隨機投10000粒豆子,其中1968粒豆子落在到正方形的頂點的距離不大于1的區(qū)域內(圖中陰影區(qū)域)的頻率為:,即有:,解得:,故答案為3.1.【點睛】幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關,而與形狀和位置無關.解決的步驟均為:求出滿足條件的基本事件對應的“幾何度量”(A),再求出總的基本事件對應的“幾何度量”,最后根據(jù)求解.利用頻率約等于概率,即可求解。16、【解析】
首先根據(jù)三視圖還原幾何體,再計算體積即可.【詳解】由三視圖知:該幾何體是以底面是直角三角形,高為的三棱錐,直觀圖如圖所示:.故答案為:【點睛】本題主要考查三視圖還原直觀圖,同時考查了錐體的體積計算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)單調增區(qū)間為,;單調減區(qū)間為.【解析】
(1)利用兩角差的正弦公式,降冪公式以及輔助角公式化簡函數(shù)解析式,根據(jù)其圖象與軸相鄰的兩個交點的距離為,得出周期,利用周期公式得出,即可得出該函數(shù)的解析式;(2)根據(jù)平移變換得出,再由函數(shù)的圖象經(jīng)過點,結合正弦函數(shù)的性質得出的最小值,進而得出,利用整體法結合正弦函數(shù)的單調性得出該函數(shù)在上的單調區(qū)間.【詳解】解:(1)由已知函數(shù)的周期,,∴.(2)將的圖象向左平移個長度單位得到的圖象∴,∵函數(shù)的圖象經(jīng)過點∴,即∴,∴,∵,∴當,取最小值,此時最小值為此時,.令,則當或,即當或時,函數(shù)單調遞增當,即時,函數(shù)單調遞減.∴在上的單調增區(qū)間為,;單調減區(qū)間為.【點睛】本題主要考查了由正弦函數(shù)的性質確定解析式以及正弦型函數(shù)的單調性,屬于中檔題.18、(1);(2),.【解析】
(1)根據(jù)最小正周期可求得;代入點,結合的范圍可求得,從而得到函數(shù)解析式;(2)令,解出的范圍即為所求的單調遞增區(qū)間.【詳解】(1)最小正周期過點,,解得:,的解析式為:(2)由,得:,的單調遞增區(qū)間為:,【點睛】本題考查根據(jù)三角函數(shù)性質求解函數(shù)解析式、正弦型函數(shù)單調區(qū)間的求解;關鍵是能夠采用整體對應的方式來利用正弦函數(shù)的最值和單調區(qū)間求解正弦型函數(shù)的解析式和單調區(qū)間.19、(1)證明見解析(2)【解析】
(1)由正弦定理、余弦定理得,則角C最大,由余弦定理可得答案.
(2)由平面向量數(shù)量積的運算及三角形的面積公式結合(1)可得,利用面積公式可求解.【詳解】【詳解】
(1)由,根據(jù)正弦定理得,又,所以即,所以,因此邊最大,即角最大.設則即,所以是銳角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面積為.【點睛】本題考查正弦定理和余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)資金借款協(xié)議書
- 整體工程分包協(xié)議書
- 逐步退股協(xié)議書范本
- 棋牌轉讓免責協(xié)議書
- 未來財產(chǎn)孩子協(xié)議書
- 2024年福建事業(yè)單位考試考試規(guī)范試題及答案
- 2025至2030年鋼質雙扇帶亮帶玻璃門項目投資價值分析報告
- 2025至2030年金鑲玉項墜項目投資價值分析報告
- 2025至2030年返水濕法除塵器項目投資價值分析報告
- 2024年農(nóng)藝師考試拒絕拖延技巧試題及答案
- 2022年國家義務教育質量檢測練習卷1八年級音樂練習卷
- 水利工程施工組織設計技術標(完整版)
- 【中小學】校內論壇、講壇、講座、年會、報告會、研討會等管理制度
- 軟件詳細設計說明書(例)
- DB44-T 2283-2021水利工程生態(tài)設計導則1-(高清現(xiàn)行)
- XX縣城區(qū)新建公廁、生活垃圾中轉站項目實施方案可行性研究報告
- 哈薩克斯坦鐵路車站代碼
- 利潤分配專項審計
- 螺紋的標注-PPT課件
- 勇者斗惡龍之怪獸仙境圖表資料合集(合成表技能)
- 履帶式液壓挖掘機挖掘機構設計
評論
0/150
提交評論