版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省棗莊市十六中2024年數(shù)學高一下期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在中,,是邊上的高,平面,則圖中直角三角形的個數(shù)是()A. B. C. D.2.用數(shù)學歸納法證明“”,從“到”左端需增乘的代數(shù)式為()A. B. C. D.3.已知,,,則()A. B. C.-7 D.74.古代數(shù)學著作《九章算術》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于30,該女子所需的天數(shù)至少為()A.7 B.8 C.9 D.105.袋中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,從袋中任取兩球,兩球顏色為一白一黑的概率等于()A. B. C. D.6.正三角形的邊長為,如圖,為其水平放置的直觀圖,則的周長為()A. B. C. D.7.已知數(shù)列{an}滿足且,則的值是()A.-5 B.- C.5 D.8.在正方體中,,分別為棱,的中點,則異面直線與所成的角為A. B. C. D.9.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點A.向左平行移動個單位長度B.向右平行移動個單位長度C.向左平行移動個單位長度D.向右平行移動個單位長度10.已知是第二象限角,()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.為等比數(shù)列,若,則_______.12.如果,,則的值為________(用分數(shù)形式表示)13.數(shù)列滿足,則數(shù)列的前6項和為_______.14.已知為等差數(shù)列,,,,則______.15.的內(nèi)角的對邊分別為,,,若的面積為,則角_______.16.已知(),則________.(用表示)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角所對的邊分別為,已知,.(1)求的值;(2)若,求周長的取值范圍.18.如圖,在三棱柱中,側棱垂直于底面,,,分別是,的中點.(1)求證:平面平面;(2)求證:平面.19.如圖,是正方形,是該正方形的中心,是平面外一點,底面,是的中點.求證:(1)平面;(2)平面平面.20.如圖,函數(shù),其中的圖象與y軸交于點.(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求使的x的集合.21.已知數(shù)列的前n項和為,且,.(1)求數(shù)列的通項公式;(2)若等差數(shù)列滿足,且,,成等比數(shù)列,求c.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)線面垂直得出一些相交直線垂直,以及找出題中一些已知的相交直線垂直,由這些條件找出圖中的直角三角形.【詳解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.綜上可知:直角三角形的個數(shù)是個,故選C.【點睛】本題考查直角三角形個數(shù)的確定,考查相交直線垂直,解題時可以充分利用直線與平面垂直的性質(zhì)得到,考查推理能力,屬于中等題.2、B【解析】
分別求出時左端的表達式,和時左端的表達式,比較可得“從到”左端需增乘的代數(shù)式.【詳解】由題意知,當時,有,當時,等式的左邊為,所以左邊要增乘的代數(shù)式為.故選:.【點睛】本題主要考查的是歸納推理,需要結合數(shù)學歸納法進行求解,熟知數(shù)學歸納法的步驟,最關鍵的是從到,考查學生仔細觀察的能力,是中檔題.3、C【解析】
把已知等式平方后可求得.【詳解】∵,∴,即,,∵,∴,∴,,∴.故選C.【點睛】本題考查同角間的三角函數(shù)關系,考查兩角和的正切公式,解題關鍵是把已知等式平方,并把1用代替,以求得.4、B【解析】試題分析:設該女子第一天織布尺,則,解得,所以前天織布的尺數(shù)為,由,得,解得的最小值為,故選B.考點:等比數(shù)列的應用.5、B【解析】
試題分析:由題意.故選B.6、C【解析】
根據(jù)斜二測畫法以及正余弦定理求解各邊長再求周長即可.【詳解】由斜二測畫法可知,,,.所以.故..故.所以的周長為.故選:C【點睛】本題主要考查了斜二測畫法的性質(zhì)以及余弦定理在求解三角形中線段長度的運用.屬于基礎題.7、A【解析】試題分析:即數(shù)列是公比為3的等比數(shù)列.考點:1.等比數(shù)列的定義及基本量的計算;2.對數(shù)的運算性質(zhì).8、A【解析】
如圖做輔助線,正方體中,且,P,M為和中點,,則即為所求角,設邊長即可求得.【詳解】如圖,取的中點,連接,,.因為為棱的中點,為的中點,所以,所以,則是異面直線與所成角的平面角.設,在中,,,則,即.【點睛】本題考查異面直線所成的角,解題關鍵在于構造包含異面直線所成角的三角形.9、D【解析】試題分析:由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向右平行移動個單位長度,故選D.【考點】三角函數(shù)圖象的平移【名師點睛】本題考查三角函數(shù)圖象的平移,在函數(shù)的圖象平移變換中要注意“”的影響,變換有兩種順序:一種的圖象向左平移個單位得的圖象,再把橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得的圖象,另一種是把的圖象橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得的圖象,再向左平移個單位得的圖象.10、A【解析】cosα=±=±,又∵α是第二象限角,∴cosα=-.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將這兩式中的量全部用表示出來,正好有兩個方程,兩個未知數(shù),解方程組即可求出?!驹斀狻肯喈斢冢喈斢?,上面兩式相除得代入就得,【點睛】基本量法是解決數(shù)列計算題最重要的方法,即將條件全部用首項和公比表示,列方程,解方程即可求得。12、【解析】
先求出,可得,再代值計算即可.【詳解】.故答案為:【點睛】本題考查了等差數(shù)列的前項和公式、累乘相消法,考查了學生的計算能力,屬于基礎題.13、84【解析】
根據(jù)分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式求解.【詳解】因為,所以.【點睛】本題考查分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式,考查基本分析求解能力,屬基礎題.14、【解析】
由等差數(shù)列的前項和公式,代入計算即可.【詳解】已知為等差數(shù)列,且,,所以,解得或(舍)故答案為【點睛】本題考查了等差數(shù)列前項和公式的應用,屬于基礎題.15、【解析】
根據(jù)三角形面積公式和余弦定理可得,從而求得;由角的范圍可確定角的取值.【詳解】故答案為:【點睛】本題考查余弦定理和三角形面積公式的應用問題,關鍵是能夠配湊出符合余弦定理的形式,進而得到所求角的三角函數(shù)值.16、【解析】
根據(jù)同角三角函數(shù)之間的關系,結合角所在的象限,即可求解.【詳解】因為,所以,故,解得,又,,所以.故填.【點睛】本題主要考查了同角三角函數(shù)之間的關系,三角函數(shù)在各象限的符號,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)3;(2).【解析】
(1)先用二倍角公式化簡,再根據(jù)正弦定理即可解出;(2)用正弦定理分別表示,再用三角形內(nèi)角和及和差公式化簡,轉化為三角函數(shù)求最值.【詳解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周長:,又因為,所以.因此周長的取值范圍是.【點睛】本題考查了正余弦定理解三角形,三角形求邊長取值范圍常用的方法:1、轉化為三角函數(shù)求最值;2、基本不等式.18、(1)證明見解析(2)證明見解析【解析】
(1)根據(jù)線面垂直的判斷定理得到平面;再由面面垂直的判定定理,即可得出結論成立;(2)取的中點,連接,,根據(jù)線面平行的判定定理,即可得出結論成立.【詳解】(1)在三棱柱中,底面,所以.又因為,所以平面;又平面,所以平面平面;(2)取的中點,連接,.因為,,分別是,,的中點,所以,且,.因為,且,所以,且,所以四邊形為平行四邊形,所以,又因為平面,平面,所以平面.【點睛】本題主要考查證明面面垂直,以及證明線面平行,熟記線面垂直、面面垂直的判定定理,以及線面平行的判定定理即可,屬于??碱}型.19、(1)見解析;(2)見解析.【解析】
(1)連接,證明后即得線面平行;(2)可證明平面,然后得面面垂直.【詳解】(1)如圖,連接,∵分別是中點,∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【點睛】本題考查證明線面平行和面面垂直,掌握線面平行和面面垂直的判定定理是解題關鍵.20、(1),(2),,(3)【解析】
(1)由函數(shù)圖像過定點,代入運算即可得解;(2)由三角函數(shù)的單調(diào)增區(qū)間的求法求解即可;(3)由,求解不等式即可得解.【詳解】解:(1)因為函數(shù)圖象過點,所以,即.因為,所以.(2)由(1)得,所以當,,即,時,是增函數(shù),故的單調(diào)遞增區(qū)間為,.(3)由,得,所以,,即,,所以時,x的集合為.【點睛】本題考查了利用函數(shù)圖像的性質(zhì)求解函數(shù)解析式,重點考查了三角函數(shù)單調(diào)區(qū)間的求法及解三角不等式,屬基礎題.21、(1);(2).【解析】
(1)根據(jù)題意,數(shù)列為1為首項,4為公差的等差數(shù)列,根據(jù)等差數(shù)列通項公式計算即可;(2)由(1)可求數(shù)列的前n項和為,根據(jù),,成等差數(shù)列及,,成等比數(shù)列,利用等差、等比數(shù)列性質(zhì)可求出c.【詳解】(1),,,故數(shù)列是以1為首項,4為公差的等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 健康飲食文化在家庭教育中的傳播與影響研究
- 2025簡單采購合同范本
- 關于孩子在競爭環(huán)境下自信心建立的研究
- 2025專業(yè)版委托物業(yè)管理合同樣本
- 企業(yè)培訓提升銷售人員的客戶心理洞察力
- 以實踐為引領的小學科創(chuàng)教育創(chuàng)新路徑
- 2024年丹參市場調(diào)查報告
- 2025酒店裝修常用合同模板
- 齊魯咨詢|2024年中國新春禮盒消費者行為洞察報告
- 2025購銷合同必須具備的合同條款
- 2024年人教版小學四年級信息技術(上冊)期末試卷附答案
- 智慧公路交通講座-日本的智能交通與智慧公路
- 2023-2024學年教科版六年級上冊科學知識點總結
- 2024年甘肅定西渭源縣糧食和物資儲備中心選調(diào)2人歷年(高頻重點復習提升訓練)共500題附帶答案詳解
- 2024年6月浙江省高考地理試卷真題(含答案)
- 2024年越南分布式光伏發(fā)電行業(yè)現(xiàn)狀及前景分析2024-2030
- 高一物理運動學經(jīng)典例題
- 傷口造口護理質(zhì)量標準
- Office辦公軟件理論知識考核試卷
- 客戶關系管理-課后練習參考答案 蘇朝暉
- JGJT334-2014 建筑設備監(jiān)控系統(tǒng)工程技術規(guī)范
評論
0/150
提交評論