2022屆北海市重點中學(xué)中考沖刺卷數(shù)學(xué)試題含解析_第1頁
2022屆北海市重點中學(xué)中考沖刺卷數(shù)學(xué)試題含解析_第2頁
2022屆北海市重點中學(xué)中考沖刺卷數(shù)學(xué)試題含解析_第3頁
2022屆北海市重點中學(xué)中考沖刺卷數(shù)學(xué)試題含解析_第4頁
2022屆北海市重點中學(xué)中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022屆北海市重點中學(xué)中考沖刺卷數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.2.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE3.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.124.《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”如圖所示,請根據(jù)所學(xué)知識計算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸5.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm6.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.7.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結(jié)論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.48.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.39.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設(shè)小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.10.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且二、填空題(共7小題,每小題3分,滿分21分)11.將一副直角三角板如圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數(shù)為__度.12.某籃球架的側(cè)面示意圖如圖所示,現(xiàn)測得如下數(shù)據(jù):底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側(cè),與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標(biāo)準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結(jié)果保留一位小數(shù),參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈).13.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.14.化簡的結(jié)果為_____.15.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()16.已知點A(2,4)與點B(b﹣1,2a)關(guān)于原點對稱,則ab=_____.17.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.(5分)某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如表:x/元…152025…y/件…252015…已知日銷售量y是銷售價x的一次函數(shù).求日銷售量y(件)與每件產(chǎn)品的銷售價x(元)之間的函數(shù)表達式;當(dāng)每件產(chǎn)品的銷售價定為35元時,此時每日的銷售利潤是多少元?20.(8分)(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當(dāng)綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學(xué)的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學(xué)測試成績和平時成績各得多少分?(2)某同學(xué)測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學(xué)綜合評價要達到A等,他的測試成績至少要多少分?21.(10分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數(shù)y=kx+b的關(guān)系式;(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標(biāo).22.(10分)如圖,網(wǎng)格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉(zhuǎn)中心,分別畫出把順時針旋轉(zhuǎn),后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設(shè)的三邊,,,請證明勾股定理.23.(12分)如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)24.(14分)如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求點C的坐標(biāo);(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當(dāng)y1<y2時x的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】A、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因為由結(jié)合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時四邊形ABCD是矩形,因此C中命題一定成立;D、因為滿足本選項條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.2、A【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.3、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關(guān)系;3.等腰三角形的性質(zhì).4、C【解析】分析:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設(shè)⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點睛:本題考查垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題5、C【解析】

圓錐的側(cè)面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設(shè)母線長為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關(guān)鍵.6、A【解析】

首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.7、B【解析】

由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①拋物線與y軸交于負半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當(dāng)x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結(jié)論有2個.故選B.【點睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的值求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.8、C【解析】

連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質(zhì)即可求得EG=FG=BC,因為D是EF中點,根據(jù)等腰三角形三線合一的性質(zhì)可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質(zhì)、勾股定理以及等腰三角形三線合一的性質(zhì),本題中根據(jù)等腰三角形三線合一的性質(zhì)求得GD⊥EF是解題的關(guān)鍵.9、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應(yīng)用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.10、D【解析】

根據(jù)二次根式和分式有意義的條件計算即可.【詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【點睛】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

根據(jù)一副直角三角板的各個角的度數(shù),結(jié)合三角形內(nèi)角和定理,即可求解.【詳解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案為:1.【點睛】本題主要考查三角形的內(nèi)角和定理以及對頂角的性質(zhì),掌握三角形的內(nèi)角和等于180°,是解題的關(guān)鍵.12、1.1.【解析】

過點D作DO⊥AH于點O,先證明△ABC∽△AOD得出=,再根據(jù)已知條件求出AO,則OH=AH-AO=DG.【詳解】解:過點D作DO⊥AH于點O,如圖:由題意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四邊形DGHO為長方形,∴DO=GH=3.05m,OH=DG,∴=,則AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,則OH=AH-AO≈1.1m,∴DG≈1.1m.故答案為1.1.【點睛】本題考查了相似三角形的性質(zhì)與應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的性質(zhì)與應(yīng)用.13、【解析】

設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB列方程求解即可.【詳解】解:設(shè)AC=x,則BC=2-x,根據(jù)AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應(yīng)用,關(guān)鍵是明確黃金分割所涉及的線段的比.14、+1【解析】

利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點睛】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.15、C【解析】

先證明△BPE∽△CDP,再根據(jù)相似三角形對應(yīng)邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.16、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.17、(或)【解析】

將拋物線化為頂點式,再按照“左加右減,上加下減”的規(guī)律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學(xué)生將一般式轉(zhuǎn)化頂點式的能力.三、解答題(共7小題,滿分69分)18、7.6m.【解析】

利用CD及正切函數(shù)的定義求得BC,AC長,把這兩條線段相減即為AB長【詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【點睛】此題主要考查了解直角三角形的應(yīng)用,正確應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.19、();()此時每天利潤為元.【解析】試題分析:(1)根據(jù)題意用待定系數(shù)法即可得解;(2)把x=35代入(1)中的解析式,得到銷量,然后再乘以每件的利潤即可得.試題解析:()設(shè),將,和,代入,得:,解得:,∴;()將代入()中函數(shù)表達式得:,∴利潤(元),答:此時每天利潤為元.20、(1)孔明同學(xué)測試成績位90分,平時成績?yōu)?5分;(2)不可能;(3)他的測試成績應(yīng)該至少為1分.【解析】試題分析:(1)分別利用孔明同學(xué)的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進而得出答案;(3)首先假設(shè)平時成績?yōu)闈M分,進而得出不等式,求出測試成績的最小值.試題解析:(1)設(shè)孔明同學(xué)測試成績?yōu)閤分,平時成績?yōu)閥分,依題意得:,解之得:.答:孔明同學(xué)測試成績位90分,平時成績?yōu)?5分;(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)設(shè)平時成績?yōu)闈M分,即100分,綜合成績?yōu)?00×20%=20,設(shè)測試成績?yōu)閍分,根據(jù)題意可得:20+80%a≥80,解得:a≥1.答:他的測試成績應(yīng)該至少為1分.考點:一元一次不等式的應(yīng)用;二元一次方程組的應(yīng)用.21、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】

(1)利用反比例函數(shù)圖象上點的坐標(biāo)特征可求出點A、B的坐標(biāo),再利用待定系數(shù)法即可求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷即可;(3)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),設(shè)點P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結(jié)論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數(shù)圖像可知,當(dāng)kx+b>時,-6<x<0或1<x;(3)當(dāng)y=x+1=0時,x=-4,∴點C(-4,0).設(shè)點P的坐標(biāo)為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標(biāo)為(-6,0)或(-1,0).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次(反比例)函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo)利用待定系數(shù)法求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷不等式取值范圍;(3)根據(jù)三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.22、(1)見解析;(2)①正方形;②;③見解析.【解析】

(1)根據(jù)旋轉(zhuǎn)作圖的方法進行作圖即可;(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)可證AC=BC1=B1C2=B2C3,從而證出四邊形CC1C2C3是菱形,再根據(jù)有一個角是直角的菱形是正方形即可作出判斷,同理可判斷四邊形ABB1B2是正方形;②根據(jù)相似圖形的面積之比等相似比的平方即可得到結(jié)果;③用兩種不同的方法計算大正方形的面積化簡即可得到勾股定理.【詳解】(1)如圖,(2)①四邊形CC1C2C3和四邊形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根據(jù)旋轉(zhuǎn)的性質(zhì)可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四邊形CC1C2C3和四邊形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四邊形CC1C2C3和四邊形ABB1B2是正方形.②∵四邊形CC1C2C3和四邊形ABB1B2是正方形,∴四邊形CC1C2C3∽四邊形ABB1B2.∴=∵AB=,CC1=,∴==.③四邊形CC1C2C3的面積==,四邊形CC1C2C3的面積=4△ABC的面積+四邊形ABB1B2的面積=4+=∴=,化簡得:=.【點睛】本題考查了旋轉(zhuǎn)作圖和旋轉(zhuǎn)的性質(zhì),正方形的判定和性質(zhì),勾股定理,掌握相關(guān)知識是解題的關(guān)鍵.23、52【解析】

根據(jù)樓高和山高可求出EF,繼而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根據(jù)CF=BD可建立方程,解出即可.【詳解】如圖,過點C作CF⊥AB于點F.設(shè)塔高AE=x,由題意得,EF=BE?CD=56?27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,則,在Rt△ABD中,∠ADB=45°,AB=x+56,則BD=AB=x+56,∵CF=BD,∴,解得:x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論