2022年湖北省黃石市富池片區(qū)十校聯(lián)考最后數(shù)學試題含解析_第1頁
2022年湖北省黃石市富池片區(qū)十校聯(lián)考最后數(shù)學試題含解析_第2頁
2022年湖北省黃石市富池片區(qū)十校聯(lián)考最后數(shù)學試題含解析_第3頁
2022年湖北省黃石市富池片區(qū)十校聯(lián)考最后數(shù)學試題含解析_第4頁
2022年湖北省黃石市富池片區(qū)十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年湖北省黃石市富池片區(qū)十校聯(lián)考最后數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)3+a2=a5C.(a2)4=a8D.a(chǎn)3﹣a2=a2.下列圖標中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3.如圖,直線、及木條在同一平面上,將木條繞點旋轉到與直線平行時,其最小旋轉角為().A. B. C. D.4.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④5.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°6.下列四個命題,正確的有()個.①有理數(shù)與無理數(shù)之和是有理數(shù)②有理數(shù)與無理數(shù)之和是無理數(shù)③無理數(shù)與無理數(shù)之和是無理數(shù)④無理數(shù)與無理數(shù)之積是無理數(shù).A.1 B.2 C.3 D.47.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或18.下列二次根式中,最簡二次根式是()A. B. C. D.9.小剛從家去學校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時后到達學校,小剛從家到學校行駛路程s(單位:m)與時間r(單位:min)之間函數(shù)關系的大致圖象是()A. B. C. D.10.股市有風險,投資需謹慎.截至今年五月底,我國股市開戶總數(shù)約95000000,正向1億挺進,95000000用科學計數(shù)法表示為()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×10911.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.12.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:_______________________.14.若反比例函數(shù)y=﹣的圖象經(jīng)過點A(m,3),則m的值是_____.15.圖中圓心角∠AOB=30°,弦CA∥OB,延長CO與圓交于點D,則∠BOD=.16.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個圖案中陰影小三角形的個數(shù)是.17.若正多邊形的一個內(nèi)角等于140°,則這個正多邊形的邊數(shù)是_______.18.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉中心順時針旋轉后得到ΔA′B′C′,且點A在A′B′上,則旋轉角為________________°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知:,,,求證:.20.(6分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.(1)求點D的坐標.(2)求點M的坐標(用含a的代數(shù)式表示).(3)當點N在第一象限,且∠OMB=∠ONA時,求a的值.21.(6分)從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.22.(8分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.23.(8分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?24.(10分)某校數(shù)學綜合實踐小組的同學以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結果制作成統(tǒng)計圖,如下圖所示:本次調(diào)查人數(shù)共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?25.(10分)解不等式組:,并把解集在數(shù)軸上表示出來。26.(12分)如圖,是5×5正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.27.(12分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q.(1)求AB的長;(2)當BQ的長為時,請通過計算說明圓P與直線DC的位置關系.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項,關鍵是掌握計算法則.2、D【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念,可知:A既不是軸對稱圖形,也不是中心對稱圖形,故不正確;B不是軸對稱圖形,但是中心對稱圖形,故不正確;C是軸對稱圖形,但不是中心對稱圖形,故不正確;D即是軸對稱圖形,也是中心對稱圖形,故正確.故選D.考點:軸對稱圖形和中心對稱圖形識別3、B【解析】

如圖所示,過O點作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進而求出將木條c繞點O旋轉到與直線a平行時的最小旋轉角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉與平行線,解題的關鍵是熟練掌握平行線的性質(zhì).4、A【解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.5、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.6、A【解析】解:①有理數(shù)與無理數(shù)的和一定是有理數(shù),故本小題錯誤;②有理數(shù)與無理數(shù)的和一定是無理數(shù),故本小題正確;③例如=0,0是有理數(shù),故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數(shù),故本小題錯誤.故選A.點睛:本題考查的是實數(shù)的運算及無理數(shù)、有理數(shù)的定義,熟知以上知識是解答此題的關鍵.7、D【解析】

當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.8、C【解析】

檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.9、B【解析】【分析】根據(jù)小剛行駛的路程與時間的關系,確定出圖象即可.【詳解】小剛從家到學校,先勻速步行到車站,因此S隨時間t的增長而增長,等了幾分鐘后坐上了公交車,因此時間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學校,因此S又隨時間t的增長而增長,故選B.【點睛】本題考查了函數(shù)的圖象,認真分析,理解題意,確定出函數(shù)圖象是解題的關鍵.10、B【解析】試題分析:15000000=1.5×2.故選B.考點:科學記數(shù)法—表示較大的數(shù)11、A【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.12、C【解析】

方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【點睛】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.14、﹣2【解析】∵反比例函數(shù)的圖象過點A(m,3),∴,解得.15、30°【解析】試題分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所對的圓周角和圓心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.16、4n﹣1.【解析】由圖可知:第一個圖案有陰影小三角形1個,第二圖案有陰影小三角形1+4=6個,第三個圖案有陰影小三角形1+8=11個,···那么第n個就有陰影小三角形1+4(n﹣1)=4n﹣1個.17、1【解析】試題分析:此題主要考查了多邊形的外角與內(nèi)角,做此類題目,首先求出正多邊形的外角度數(shù),再利用外角和定理求出求邊數(shù).首先根據(jù)求出外角度數(shù),再利用外角和定理求出邊數(shù).∵正多邊形的一個內(nèi)角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內(nèi)角與外角.18、50度【解析】

由將△ACB繞點C順時針旋轉得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點C順時針旋轉得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉前后圖形的對應關系,注意數(shù)形結合思想的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析;【解析】

根據(jù)HL定理證明Rt△ABC≌Rt△DEF,根據(jù)全等三角形的性質(zhì)證明即可.【詳解】,BE為公共線段,∴CE+BE=BF+BE,即又,在與中,≌∴AC=DF.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關鍵.20、(1)D(2,2);(2);(3)【解析】

(1)令x=0求出A的坐標,根據(jù)頂點坐標公式或配方法求出頂點B的坐標、對稱軸直線,根據(jù)點A與點D關于對稱軸對稱,確定D點坐標.(2)根據(jù)點B、D的坐標用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點的坐標.(3)根據(jù)點A、B的坐標用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進而求出交點N的坐標,得到ON的長.過A點作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長,表示出EN的長.根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.【詳解】(1)當x=0時,,∴A點的坐標為(0,2)∵∴頂點B的坐標為:(1,2-a),對稱軸為x=1,∵點A與點D關于對稱軸對稱∴D點的坐標為:(2,2)(2)設直線BD的解析式為:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直線BD的解析式為:y=ax+2-2a當y=0時,ax+2-2a=0,解得:x=∴M點的坐標為:(3)由D(2,2)可得:直線OD解析式為:y=x設直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直線AB的解析式為y=-ax+2聯(lián)立成方程組:,解得:∴N點的坐標為:()ON=()過A點作AE⊥OD于E點,則△AOE為等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M,C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵拋物線開口向下,故a<0,∴a=舍去,【點睛】本題是一道二次函數(shù)與一次函數(shù)及三角函數(shù)綜合題,掌握并靈活應用二次函數(shù)與一次函數(shù)的圖象與性質(zhì),以及構建直角三角形借助點的坐標使用相等角的三角函數(shù)是解題的關鍵.21、4小時.【解析】

本題依據(jù)題意先得出等量關系即客車由高速公路從A地道B的速度=客車由普通公路的速度+45,列出方程,解出檢驗并作答.【詳解】解:設客車由高速公路從甲地到乙地需x小時,則走普通公路需2x小時,根據(jù)題意得:解得x=4經(jīng)檢驗,x=4原方程的根,答:客車由高速公路從甲地到乙地需4時.【點睛】本題主要考查分式方程的應用,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.根據(jù)速度=路程÷時間列出相關的等式,解答即可.22、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據(jù)勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.23、1千米/時【解析】

設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)由貨輪往返兩個碼頭之間,可知順水航行的距離與逆水航行的距離相等列出方程,解方程即可求解.【詳解】設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【點睛】本題考查了一元一次方程的應用,讀懂題意,找出等量關系,設出未知數(shù)后列出方程是解決此類題目的基本思路.24、(1)200,90(2)圖形見解析(3)750人【解析】試題分析:(1)用對于共享單車不了解的人數(shù)20除以對于共享單車不了解的人數(shù)所占得百分比即可得本次調(diào)查人數(shù);用總人數(shù)乘以使用過共享單車人數(shù)所占的百分比即可得使用過共享單車的人數(shù);(2)用使用過共享單車的總人數(shù)減去0~2,4~6,6~8的人數(shù),即可得2~4的人數(shù),再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數(shù)所占的百分比即可得每天的騎行路程在2~4千米的人數(shù).試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論