版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
高中數(shù)學教案6篇高中數(shù)學教學設計篇一一、課題:人教版全日制普通高級中學教科書數(shù)學第一冊(上)《2、7對數(shù)》二、指導思想與理論依據(jù):《數(shù)學課程標準》指出:高中數(shù)學課程應講清一些基本內(nèi)容的實際背景和應用價值,開展“數(shù)學建模”的學習活動,把數(shù)學的應用自然地融合在平常的教學中。任何一個數(shù)學概念的引入,總有它的現(xiàn)實或數(shù)學理論發(fā)展的需要。都應強調(diào)它的現(xiàn)實背景、數(shù)學理論發(fā)展背景或數(shù)學發(fā)展歷史上的背景,這樣才能使教學內(nèi)容顯得自然和親切,讓學生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學生認識數(shù)學內(nèi)容的實際背景和應用的價值。在教學設計時,既要關注學生在數(shù)學情感態(tài)度和科學價值觀方面的發(fā)展,也要幫助學生理解和掌握數(shù)學基礎知識和基本技能,發(fā)展能力。在課程實施中,應結(jié)合教學內(nèi)容介紹一些對數(shù)學發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學在人類社會進步、人類文化建設中的作用,同時反映社會發(fā)展對數(shù)學發(fā)展的促進作用。三、教材分析:本節(jié)內(nèi)容主要學習對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學教學的始終。通過對數(shù)的學習,可以解決數(shù)學中知道底數(shù)和冪值求指數(shù)的問題,以及對數(shù)函數(shù)的。相關問題。四、學情分析:在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學習指數(shù)的基礎上學習對數(shù)的概念是水到渠成的事。五、教學目標:(一)教學知識點:1、對數(shù)的概念。2、對數(shù)式與指數(shù)式的互化。(二)能力目標:1、理解對數(shù)的概念。2、能夠進行對數(shù)式與指數(shù)式的互化。(三)德育滲透目標:1、認識事物之間的相互聯(lián)系與相互轉(zhuǎn)化,2、用聯(lián)系的觀點看問題。六、教學重點與難點:重點是對數(shù)定義,難點是對數(shù)概念的理解。七、教學方法:講練結(jié)合法八、教學流程:問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的性質(zhì)、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習小結(jié)、形成反思(例題,小結(jié))八、教學反思:對本節(jié)內(nèi)容在進行教學設計之前,本人反復閱讀了課程標準和教材,教材內(nèi)容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內(nèi)容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。對于本教學設計,時間倉促,不足之處在所難免,期待與各位同仁交流。高中數(shù)學教學設計篇二教學目的:掌握圓的標準方程,并能解決與之有關的問題教學重點:圓的標準方程及有關運用教學難點:標準方程的靈活運用教學過程:一、導入新課,探究標準方程二、掌握知識,鞏固練習練習:1、說出下列圓的方程⑴圓心(3,—2)半徑為5⑵圓心(0,3)半徑為32、指出下列圓的圓心和半徑⑴(x—2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2—6x+4y+12=03、判斷3x—4y—10=0和x2+y2=4的位置關系4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程三、引伸提高,講解例題例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)練習:1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)四、小結(jié)練習P771,2,3,4五、作業(yè)P811,2,3,4高中數(shù)學單元教學設計篇三重點難點教學:1.正確理解映射的概念;2.函數(shù)相等的兩個條件;3.求函數(shù)的定義域和值域。教學過程:1.使學生熟練掌握函數(shù)的概念和映射的定義;2.使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;3.使學生掌握函數(shù)的三種表示方法。教學內(nèi)容:1.函數(shù)的定義設A、B是兩個非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的'任意一個數(shù)x,在集合B中都有唯一確定的數(shù)fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:,yfA其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{|}fA?叫值域(range)。顯然,值域是集合B的子集。注意:①“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.2.構(gòu)成函數(shù)的三要素定義域、對應關系和值域。3、映射的定義設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。4.區(qū)間及寫法:設a、b是兩個實數(shù),且a(1)滿足不等式axb的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];(2)滿足不等式axb的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);5.函數(shù)的三種表示方法①解析法②列表法③圖像法高中數(shù)學優(yōu)秀教學設計篇四一、教學內(nèi)容分析:本節(jié)教材選自人教a版數(shù)學必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學習中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學空間點、線、面位置關系的基礎作為學習的出發(fā)點,結(jié)合有關的實物模型,通過直觀感知、操作確認(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學習對培養(yǎng)學生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學習作用重大。二、學生學習情況分析:任教的學生在年段屬中上程度,學生學習興趣較高,但學習立幾所具備的語言表達及空間感與空間想象能力相對不足,學習方面有一定困難。三、設計思想本節(jié)課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學手段,借助實物模型,通過直觀感知,操作確認,合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機結(jié)合,讓學生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學的概念,領會數(shù)學的思想方法,養(yǎng)成積極主動、勇于探索、自主學習的學習方式,發(fā)展學生的空間觀念和空間想象力,提高學生的數(shù)學邏輯思維能力。四、教學目標通過直觀感知——觀察——操作確認的認識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準確使用數(shù)學符號語言、文字語言表述判定定理。培養(yǎng)學生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學生在觀察、探究、發(fā)現(xiàn)中學習,在自主合作、交流中學習,體驗學習的樂趣,增強自信心,樹立積極的學習態(tài)度,提高學習的自我效能感。五、教學重點與難點重點是判定定理的引入與理解,難點是判定定理的應用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。六、教學過程設計(一)知識準備、新課引入提問1:根據(jù)公共點的情況,空間中直線a和平面?有哪幾種位置關系?并完成下表:(多媒體幻燈片演示)a??提問2:根據(jù)直線與平面平行的定義(沒有公共點)來判定直線與平面平行你認為方便嗎?談談你的看法,并指出是否有別的判定途徑。[設計意圖:通過提問,學生復習并歸納空間直線與平面位置關系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準備。](二)判定定理的探求過程1、直觀感知提問:根據(jù)同學們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?生1:例舉日光燈與天花板,樹立的電線桿與墻面。生2:門轉(zhuǎn)動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學生到教室門前作演示),然后教師用多媒體動畫演示。[學情預設:此處的預設與生成應當是很自然的,但老師要預見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]2、動手實踐教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉(zhuǎn)動,觀察另一邊與桌面的位置給人以平行的感覺,而當把直角腰放在桌面上并轉(zhuǎn)動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。[設計意圖:設置這樣動手實踐的情境,是為了讓學生更清楚地看到線面平行與否的關鍵因素是什么,使學生學在情境中,思在情理中,感悟在內(nèi)心中,學自己身邊的數(shù)學,領悟空間觀念與空間圖形性質(zhì)。]3、探究思考(1)上述演示的直線與平面位置關系為何有如此的不同?關鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關鍵是三個要素:①平面外一條線②我們把直線與平面相交或平行的位置關系統(tǒng)稱為直線在平面外,用符號表示為平面內(nèi)一條直線③這兩條直線平行(2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?4、歸納確認:(多媒體幻燈片演示)直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個平面平行。簡單概括:(內(nèi)外)線線平行?線面平行a符號表示:ba||?a||b??溫馨提示:作用:判定或證明線面平行。關鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。思想:空間問題轉(zhuǎn)化為平面問題(三)定理運用,問題探究(多媒體幻燈片演示)1、想一想:(1)判斷下列命題的真假?說明理由:①如果一條直線不在平面內(nèi),則這條直線就與平面平行()②過直線外一點可以作無數(shù)個平面與這條直線平行()③一直線上有二個點到平面的距離相等,則這條直線與平面平行()(2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關系是()a、a||?b、a??c、a||?或a??d、a??[學情預設:設計這組問題目的是強調(diào)定理中三個條件的重要性,同時預設(1)中的③學生可能認為正確的,這樣就無法達到老師的預設與生成的目的,這時教師要引導學生思考,讓學生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學生空間想象力強,能按老師的要求生成正確的結(jié)果則就由個別學生進行演示。]2、作一作:設a、b是二異面直線,則過a、b外一點p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?先由學生討論交流,教師提問,然后教師總結(jié),并用準備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。[設計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認識,更重要的是培養(yǎng)學生空間感與思維的嚴謹性。]3、證一證:例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點,求證:ef||平面bcd。變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點,連結(jié)ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點在線段ae上、q點在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關系?(在變式一的基礎上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。[設計意圖:設計二個變式訓練,目的是通過問題探究、討論,思辨,及時鞏固定理,運用定理,培養(yǎng)學生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點,求證:ef||平面bdd1b1分析:根據(jù)判定定理必須在平面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點問題找中點解決的方法,可以取bd或b1d1中點而證之。思路一:取bd中點g連d1g、eg,可證d1gef為平行四邊形。思路二:取d1b1中點h連hb、hf,可證hfeb為平行四邊形。[知識鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點。平行問題找中點解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]4、練一練:練習1:見課本6頁練習1、2練習2:將兩個全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點,求證:mn||平面bce。變式:若將練習2中m、n改為ac、bf分點且am=fn,試問結(jié)論仍成立嗎?試證之。[設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過練習2及其變式的訓練,讓學生能在復雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達到逐步培養(yǎng)空間感與邏輯思維能力。](四)總結(jié)先由學生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個平面平行。2、定理的符號表示:ba||?a||b??簡述:(內(nèi)外)線線平行則線面平行3、定理運用的關鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點利用平行四邊形或三角形中位線性質(zhì)等。七、教學反思本節(jié)“直線與平面平行的判定”是學生學習空間位置關系的判定與性質(zhì)的第一節(jié)課,也是學生開始學習立幾演澤推理論述的思維方式方法,因此本節(jié)課學習對發(fā)展學生的空間觀念和邏輯思維能力是非常重要的。本節(jié)課的設計遵循“直觀感知——操作確認——思辯論證”的認識過程,注重引導學生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認識直線和平面平行的判定方法,讓學生通過自主探索、合作交流,進一步認識和掌握空間圖形的性質(zhì),積累數(shù)學活動的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀念與推理能力。本節(jié)課的設計注重訓練學生準確表達數(shù)學符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復習引入,讓學生用三種語言的表達,動手實踐、定理探求過程以及定理描述也注重三種語言的表達,對例題的講解與分析也注意指導學生三種語言的表達。本節(jié)課對定理的探求與認識過程的設計始終貫徹直觀在先,感知在先,學自己身邊的數(shù)學,感知生活中包涵的數(shù)學現(xiàn)象與數(shù)學原理,體驗數(shù)學即生活的道理,比如讓學生舉生活中能感知線面平行的例子,學生會舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動的門等等,同時老師的舉例也很貼進生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學生從中抽象概括出定理。高中數(shù)學單元教學設計篇五學習目標明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題。學習過程一、學前準備復習:1.(課本P28A13)填空:(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數(shù)是;(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;(4)集合A有個元素,集合B有個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是;二、新課導學◆探究新知(復習教材P14~P25,找出疑惑之處)問題1:判斷下列問題哪個是排列問題,哪個是組合問題:(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?◆應用示例例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?例2.7位同學站成一排,分別求出符合下列要求的不同排法的種數(shù)。(1)甲站在中間;(2)甲、乙必須相鄰;(3)甲在乙的左邊(但不一定相鄰);(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;(5)甲、乙、丙相鄰;(6)甲、乙不相鄰;(7)甲、乙、丙兩兩不相鄰。◆反饋練習1.(課本P40A4)某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有多少種邀請方法?2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種。當堂檢測1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目。如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()A.42B.30C.20D.122.(課本P40A7)書架上有4本不同的數(shù)學書,5本不同的物理書,3本不同的化學書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?課后作業(yè)1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于202445的正整數(shù)?2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?數(shù)學高中教學設計篇六教學目標:(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化(2)理解直線與二元一次方程的關系及其證明(3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點教學重點、難點:直線方程的一般式。直線與二元一次方程(不同時為0)的對應關系及其證明教學用具:計算機教學方法:啟發(fā)引導法,討論法教學過程:下面給出教學實施過程設計的簡要思路:教學設計思路:(一)引入的設計前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。肯定學生回答,并糾正學生中不規(guī)范的表述。再看一個問題:問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次??隙▽W生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”。啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:【問題1】“任意直線的方程都是二元一次方程嗎?”(二)本節(jié)主體內(nèi)容教學的設計這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。學生或獨立研究,或合作研究,教師巡視指導。經(jīng)過一定時間的研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:思路一:…思路二:…教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新建住宅小區(qū)物業(yè)服務質(zhì)量提升項目承包合同3篇
- 2025年度碳排放減少合同協(xié)議書3篇
- 2025年度軟件開發(fā)合同:功能需求與技術(shù)實施3篇
- 2025年新能源物流私有車輛貨物運輸合同6篇
- 2024琴行音樂教育勞動合同范本解析3篇
- 2025年度花卉產(chǎn)業(yè)知識產(chǎn)權(quán)保護與合作合同3篇
- 2024年網(wǎng)絡平臺運營與服務合同
- 2024版全新排水溝合同
- 2025年度雇傭家政保姆合同:明確家政服務公司、保姆與用戶之間的權(quán)利義務3篇
- 2024版金融投資咨詢服務合同
- 15.5-博物館管理法律制度(政策與法律法規(guī)-第五版)
- 水泥廠鋼結(jié)構(gòu)安裝工程施工方案
- 2023光明小升初(語文)試卷
- 三年級上冊科學說課課件-1.5 水能溶解多少物質(zhì)|教科版
- GB/T 7588.2-2020電梯制造與安裝安全規(guī)范第2部分:電梯部件的設計原則、計算和檢驗
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- 小學道德與法治學科高級(一級)教師職稱考試試題(有答案)
- 河北省承德市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 實用性閱讀與交流任務群設計思路與教學建議
- 應急柜檢查表
- 通風設施標準
評論
0/150
提交評論