版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣州市越秀區(qū)知用中學(xué)2022年中考二模數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.某射擊運動員練習(xí)射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=82.根據(jù)文化和旅游部發(fā)布的《“五一”假日旅游指南》,今年“五一”期間居民出游意愿達36.6%,預(yù)計“五一”期間全固有望接待國內(nèi)游客1.49億人次,實現(xiàn)國內(nèi)旅游收入880億元.將880億用科學(xué)記數(shù)法表示應(yīng)為()A.8×107 B.880×108 C.8.8×109 D.8.8×10103.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.44.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊5.一個六邊形的六個內(nèi)角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.166.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角7.如圖,甲、乙、丙圖形都是由大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置小正方體的個數(shù).其中主視圖相同的是()A.僅有甲和乙相同 B.僅有甲和丙相同C.僅有乙和丙相同 D.甲、乙、丙都相同8.小亮家1月至10月的用電量統(tǒng)計如圖所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()A.30和20B.30和25C.30和22.5D.30和17.59.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E10.如圖,任意轉(zhuǎn)動正六邊形轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針指向大于3的數(shù)的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.12.如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為_________.13.如圖所示,在四邊形ABCD中,AD⊥AB,∠C=110°,它的一個外角∠ADE=60°,則∠B的大小是_____.14.若關(guān)于x的分式方程的解為非負(fù)數(shù),則a的取值范圍是_____.15.同學(xué)們設(shè)計了一個重復(fù)拋擲的實驗:全班48人分為8個小組,每組拋擲同一型號的一枚瓶蓋300次,并記錄蓋面朝上的次數(shù),下表是依次累計各小組的實驗結(jié)果.1組1~2組1~3組1~4組1~5組1~6組1~7組1~8組蓋面朝上次數(shù)16533548363280194911221276蓋面朝上頻率0.5500.5580.5370.5270.5340.5270.5340.532根據(jù)實驗,你認(rèn)為這一型號的瓶蓋蓋面朝上的概率為____,理由是:____.16.若-2amb4與5a2bn+7是同類項,則m+n=.三、解答題(共8題,共72分)17.(8分)2018年春節(jié),西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節(jié)晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當(dāng)元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。18.(8分)在“雙十一”購物街中,某兒童品牌玩具專賣店購進了兩種玩具,其中類玩具的金價比玩具的進價每個多元.經(jīng)調(diào)查發(fā)現(xiàn):用元購進類玩具的數(shù)量與用元購進類玩具的數(shù)量相同.求的進價分別是每個多少元?該玩具店共購進了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進類玩具多少個?19.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.20.(8分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.求y關(guān)于x的函數(shù)關(guān)系式;該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.21.(8分)對于某一函數(shù)給出如下定義:若存在實數(shù)m,當(dāng)其自變量的值為m時,其函數(shù)值等于﹣m,則稱﹣m為這個函數(shù)的反向值.在函數(shù)存在反向值時,該函數(shù)的最大反向值與最小反向值之差n稱為這個函數(shù)的反向距離.特別地,當(dāng)函數(shù)只有一個反向值時,其反向距離n為零.例如,圖中的函數(shù)有4,﹣1兩個反向值,其反向距離n等于1.(1)分別判斷函數(shù)y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數(shù)y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數(shù)y=請直接寫出這個函數(shù)的反向距離的所有可能值,并寫出相應(yīng)m的取值范圍.22.(10分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標(biāo);(2)若直線EF的解析式為y=3(3)若雙曲線y=k23.(12分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.24.如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關(guān)系?試說明理由;(3)若AD=4,AB=6,求的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;
故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.2、D【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】880億=88000000000=8.8×1010,
故選D.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、D【解析】
①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個.故選D.4、C【解析】分析:由A、B、C三點表示的數(shù)之間的關(guān)系結(jié)合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關(guān)系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關(guān)鍵是確定a、b、c的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關(guān)系分別找出各點代表的數(shù)是關(guān)鍵.5、C【解析】
解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.6、B【解析】
利用對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【點睛】考查了命題與定理的知識,解題的關(guān)鍵是了解對頂角的性質(zhì)、平方根的性質(zhì)、銳角和鈍角的定義,難度不大.7、B【解析】試題分析:根據(jù)分析可知,甲的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;乙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,1;丙的主視圖有2列,每列小正方數(shù)形數(shù)目分別為2,2;則主視圖相同的是甲和丙.考點:由三視圖判斷幾何體;簡單組合體的三視圖.8、C【解析】
將折線統(tǒng)計圖中的數(shù)據(jù)從小到大重新排列后,根據(jù)中位數(shù)和眾數(shù)的定義求解可得.【詳解】將這10個數(shù)據(jù)從小到大重新排列為:10、15、15、20、20、25、25、30、30、30,所以該組數(shù)據(jù)的眾數(shù)為30、中位數(shù)為20+252故選:C.【點睛】此題考查了眾數(shù)與中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.9、C【解析】
根據(jù)平行線性質(zhì)和全等三角形的判定定理逐個分析.【詳解】由,得∠B=∠D,因為,若≌,則還需要補充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點睛】本題考核知識點:全等三角形的判定.解題關(guān)鍵點:熟記全等三角形判定定理.10、D【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數(shù),大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質(zhì);3等腰三角形.12、【解析】
由勾股定理可先求得AM,利用條件可證得△ABM∽△EMA,則可求得AE的長,進一步可求得DE.【詳解】詳解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴=,即=,∴AE=,∴DE=AE﹣AD=﹣12=.故答案為.【點睛】本題主要考查相似三角形的判定和性質(zhì),利用條件證得△ABM∽△EMA是解題的關(guān)鍵.13、40°【解析】【分析】根據(jù)外角的概念求出∠ADC的度數(shù),再根據(jù)垂直的定義、四邊形的內(nèi)角和等于360°進行求解即可得.【詳解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案為40°.【點睛】本題考查了多邊形的內(nèi)角和外角,掌握四邊形的內(nèi)角和等于360°、外角的概念是解題的關(guān)鍵.14、且【解析】分式方程去分母得:2(2x-a)=x-2,去括號移項合并得:3x=2a-2,解得:,∵分式方程的解為非負(fù)數(shù),∴且,解得:a≥1且a≠4.15、0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【解析】
根據(jù)用頻率估計概率解答即可.【詳解】∵在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值,∴這一型號的瓶蓋蓋面朝上的概率為0.532,故答案為:0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【點睛】本題考查了利用頻率估計概率的知識,解答此題關(guān)鍵是用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.16、-1.【解析】試題分析:根據(jù)同類項是字母相同且相同字母的指數(shù)也相同,可得方程組,根據(jù)解方程組,可得m、n的值,根據(jù)有理數(shù)的加法,可得答案.試題解析:由-2amb4與5a2bn+7是同類項,得m=2n+7=4解得m=2n=-3∴m+n=-1.考點:同類項.三、解答題(共8題,共72分)17、(1);(2).【解析】
(1)根據(jù)概率=所求情況數(shù)與總情況數(shù)之比代入解得即可.(2)將小明吃到的前兩個元宵的所有情況列表出來即可求解.【詳解】(1)5個元宵中,五仁餡的有2個,故小明吃到的第一個元宵是五仁餡的概率是;(2)小明吃到的前兩個元宵的所有情況列表如下(記黑芝麻餡的兩個分別為、,五仁餡的兩個分別為、,桂花餡的一個為c):由圖可知,共有20種等可能的情況,其中小明吃到的前兩個元宵是同一種餡料的情況有4種,故小明吃到的前兩個元宵是同一種餡料的概率是.【點睛】本題考查的是用列表法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,用到的知識點為:概率=所求:情況數(shù)與總情況數(shù)之比.18、(1)的進價是元,的進價是元;(2)至少購進類玩具個.【解析】
(1)設(shè)的進價為元,則的進價為元,根據(jù)用元購進類玩具的數(shù)量與用元購進類玩具的數(shù)量相同這個等量關(guān)系列出方程即可;(2)設(shè)玩具個,則玩具個,結(jié)合“玩具點將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得利潤不少于元”列出不等式并解答.【詳解】解:(1)設(shè)的進價為元,則的進價為元由題意得,解得,經(jīng)檢驗是原方程的解.所以(元)答:的進價是元,的進價是元;(2)設(shè)玩具個,則玩具個由題意得:解得.答:至少購進類玩具個.【點睛】本題考查了分式方程的應(yīng)用和一元一次不等式的應(yīng)用.解決本題的關(guān)鍵是讀懂題意,找到符合題意的數(shù)量關(guān)系,準(zhǔn)確的解分式方程或不等式是需要掌握的基本計算能力.19、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】
(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.20、(1)=﹣100x+50000;(2)該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)見解析.【解析】【分析】(1)根據(jù)“總利潤=A型電腦每臺利潤×A電腦數(shù)量+B型電腦每臺利潤×B電腦數(shù)量”可得函數(shù)解析式;(2)根據(jù)“B型電腦的進貨量不超過A型電腦的2倍且電腦數(shù)量為整數(shù)”求得x的范圍,再結(jié)合(1)所求函數(shù)解析式及一次函數(shù)的性質(zhì)求解可得;(3)據(jù)題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當(dāng)0<a<100時,y隨x的增大而減小,②a=100時,y=50000,③當(dāng)100<m<200時,a﹣100>0,y隨x的增大而增大,分別進行求解.【詳解】(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y隨x的增大而減小,∵x為正數(shù),∴x=34時,y取得最大值,最大值為46600,答:該商店購進A型34臺、B型電腦66臺,才能使銷售總利潤最大,最大利潤是46600元;(3)據(jù)題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60,①當(dāng)0<a<100時,y隨x的增大而減小,∴當(dāng)x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②a=100時,a﹣100=0,y=50000,即商店購進A型電腦數(shù)量滿足33≤x≤60的整數(shù)時,均獲得最大利潤;③當(dāng)100<a<200時,a﹣100>0,y隨x的增大而增大,∴當(dāng)x=60時,y取得最大值.即商店購進60臺A型電腦和40臺B型電腦的銷售利潤最大.【點睛】本題考查了一次函數(shù)的應(yīng)用及一元一次不等式的應(yīng)用,弄清題意,找出題中的數(shù)量關(guān)系列出函數(shù)關(guān)系式、找出不等關(guān)系列出不等式是解題的關(guān)鍵.21、(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b=±1;②0≤n≤8;(3)當(dāng)m>2或m≤﹣2時,n=2,當(dāng)﹣2<m≤2時,n=2.【解析】
(1)根據(jù)題目中的新定義可以分別計算出各個函數(shù)是否有方向值,有反向值的可以求出相應(yīng)的反向距離;(2)①根據(jù)題意可以求得相應(yīng)的b的值;②根據(jù)題意和b的取值范圍可以求得相應(yīng)的n的取值范圍;(3)根據(jù)題目中的函數(shù)解析式和題意可以解答本題.【詳解】(1)由題意可得,當(dāng)﹣m=﹣m+1時,該方程無解,故函數(shù)y=﹣x+1沒有反向值,當(dāng)﹣m=時,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距離為2,當(dāng)﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距離是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距離為零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴當(dāng)x≥m時,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;當(dāng)x<m時,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,當(dāng)m>2或m≤﹣2時,n=2,當(dāng)﹣2<m≤2時,n=2.【點睛】本題是一道二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題目中的新定義,找出所求問題需要的條件,利用新定義解答相關(guān)問題.22、(1)E(-3,4)、F(-5,0);(2)-334【解析】
(1)連接OE,BF,根據(jù)題意可知:BC=OA=8,BA=OC=4,設(shè)EC=x,則BE=OE=8-x,根據(jù)勾股定理可得:OC2+CE2(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則3x+3=0,解得x=-3,根據(jù)菱形的性質(zhì)得OF=OE=BE=BF=3令y=n,則3x+3=n,解得x=n-33(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,根據(jù)勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出點E(m2-n22m?,?n)、F
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年超市促銷方案5篇范文模板
- 石河子大學(xué)《食品物性學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《結(jié)構(gòu)力學(xué)二》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《簡明新疆地方史教程》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《風(fēng)景畫表現(xiàn)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《自動武器原理與構(gòu)造》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《交互設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 2018年四川內(nèi)江中考滿分作文《我心中的英雄》12
- 沈陽理工大學(xué)《電力電子技術(shù)》2023-2024學(xué)年期末試卷
- 廣州 存量房交易合同 范例
- 信息安全保密控制措施資料
- 《現(xiàn)代漢語修辭》PPT課件(完整版)
- 行政倫理學(xué)-試題及答案
- TTJCA 0007-2022 住宅室內(nèi)裝飾裝修工程施工驗收規(guī)范
- 鄉(xiāng)村振興戰(zhàn)略項目經(jīng)費績效評價指標(biāo)體系及分值表
- 構(gòu)造柱工程施工技術(shù)交底
- 醫(yī)院科室質(zhì)量與安全管理小組工作記錄本目錄
- 300字方格紙模板
- 草訣百韻歌原文及解釋
- 鋼網(wǎng)架防火涂料施工方案
評論
0/150
提交評論