2022年文山市重點中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2022年文山市重點中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2022年文山市重點中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2022年文山市重點中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2022年文山市重點中學畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年文山市重點中學畢業(yè)升學考試模擬卷數(shù)學卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數(shù)的統(tǒng)計結果如下表:班級參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學分析上表后得出如下結論:①甲、乙兩班學生的平均成績相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結論中,正確的是()A.①② B.②③ C.①③ D.①②③2.函數(shù)的自變量x的取值范圍是()A. B. C. D.3.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是()A.12 B.14 C.16 D.184.定義:若點P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構造的二次函數(shù)y=ax2+bx稱為函數(shù)y=1x的一個“派生函數(shù)”.例如:點(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題5.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°6.下列大學的?;請D案是軸對稱圖形的是()A. B. C. D.7.如圖,直線y=kx+b與x軸交于點(﹣4,0),則y>0時,x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<08.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機在大正方形及其內部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.59.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.12510.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數(shù)為()A.76° B.74° C.72° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.請看楊輝三角(1),并觀察下列等式(2):根據(jù)前面各式的規(guī)律,則(a+b)6=.12.如圖,在平面直角坐標系中,函數(shù)y=(x>0)的圖象經(jīng)過矩形OABC的邊AB、BC的中點E、F,則四邊形OEBF的面積為________.13.如圖,函數(shù)y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉30°,交函數(shù)y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.14.關于x的一元二次方程ax2﹣x﹣=0有實數(shù)根,則a的取值范圍為________.15.當a=3時,代數(shù)式的值是______.16.如圖所示,擺第一個“小屋子”要5枚棋子,擺第二個要11枚棋子,擺第三個要17枚棋子,則擺第30個“小屋子”要___枚棋子.17.如圖,在平面直角坐標系中,拋物線可通過平移變換向__________得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.三、解答題(共7小題,滿分69分)18.(10分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.19.(5分)如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點P,使△APB的周長最??;①在直線m上作出該點P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結果)20.(8分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達終點?21.(10分)在等邊△ABC外側作直線AM,點C關于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數(shù);(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數(shù)量關系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數(shù).22.(10分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.23.(12分)如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測得乙的頂部處的俯角為,測得底部處的俯角為,求甲、乙建筑物的高度和(結果取整數(shù)).參考數(shù)據(jù):,.24.(14分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數(shù)、中位數(shù)、方差等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、D【解析】

根據(jù)二次根式的意義,被開方數(shù)是非負數(shù).【詳解】根據(jù)題意得,解得.故選D.【點睛】本題考查了函數(shù)自變量的取值范圍的確定和分式的意義.函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負數(shù).3、C【解析】延長線段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN與△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的邊BC的中點,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故選C.4、C【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質a、b同號對稱軸在y軸左側,a、b異號對稱軸在y軸右側即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時,y=0,經(jīng)過原點,不能得出結論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側,∴存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點,∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進過同一點,是真命題.考點:(1)命題與定理;(2)新定義型5、C【解析】

如圖,根據(jù)長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.6、B【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項錯誤;

B、是軸對稱圖形,故本選項正確;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當y<1時,x<-4,故選C.考點:本題考查的是一次函數(shù)的圖象點評:解答本題的關鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.8、B【解析】

設大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【詳解】解:設大正方形邊長為2,則小正方形邊長為1,因為面積比是相似比的平方,

所以大正方形面積為4,小正方形面積為1,

則針孔扎到小正方形(陰影部分)的概率是;故選:B.【點睛】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.9、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.10、B【解析】

直接利用三角形內角和定理得出∠ABC的度數(shù),再利用翻折變換的性質得出∠BDE的度數(shù).【詳解】解:∵∠A=56°,∠C=88°,

∴∠ABC=180°-56°-88°=36°,

∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,

∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,

∴∠BDE=180°-18°-88°=74°.

故選:B.【點睛】此題主要考查了三角形內角和定理,正確掌握三角形內角和定理是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】

通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項系數(shù)分別為2、2、25、20、25、2、2.【詳解】通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項系數(shù)分別為2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.12、2【解析】設矩形OABC中點B的坐標為,∵點E、F是AB、BC的中點,∴點E、F的坐標分別為:、,∵點E、F都在反比例函數(shù)的圖象上,∴S△OCF==,S△OAE=,∴S矩形OABC=,∴S四邊形OEBF=S矩形OABC-S△OAE-S△OCF=.即四邊形OEBF的面積為2.點睛:反比例函數(shù)中“”的幾何意義為:若點P是反比例函數(shù)圖象上的一點,連接坐標原點O和點P,過點P向坐標軸作垂線段,垂足為點D,則S△OPD=.13、-3【解析】

作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據(jù)旋轉的性質得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數(shù)y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數(shù)y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數(shù)綜合題:點在反比例函數(shù)圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉的性質以及等腰直角三角形的性質進行線段的轉換與計算.14、a≥﹣1且a≠1【解析】

利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據(jù)題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數(shù)根;當△=1時,方程有兩個相等的兩個實數(shù)根;當△<1時,方程無實數(shù)根.15、1.【解析】

先根據(jù)分式混合運算順序和運算法則化簡原式,再將a的值代入計算可得.【詳解】原式=÷=?=,當a=3時,原式==1,故答案為:1.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.16、1.【解析】

根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個,第2個圖案中棋子的個數(shù)5+6=11個,…,每個圖形都比前一個圖形多用6個,繼而可求出第30個“小屋子”需要的棋子數(shù).【詳解】根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個.第2個圖案中棋子的個數(shù)5+6=11個.….每個圖形都比前一個圖形多用6個.∴第30個圖案中棋子的個數(shù)為5+29×6=1個.故答案為1.【點睛】考核知識點:圖形的規(guī)律.分析出一般數(shù)量關系是關鍵.17、先向右平移2個單位再向下平移2個單位;4【解析】.平移后頂點坐標是(2,-2),利用割補法,把x軸上方陰影部分補到下方,可以得到矩形面積,面積是.三、解答題(共7小題,滿分69分)18、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點B作BF⊥CE于點F,∵E是AB中點,∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【點睛】本題考查的是切線的性質、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.19、(1)詳見解析;(2)①詳見解析;②.【解析】

(1)根據(jù)軸對稱的性質,可作出△ABC關于直線n的對稱圖形△A′B′C′;

(2)①作點B關于直線m的對稱點B'',連接B''A與x軸的交點為點P;

②由△ABP的周長=AB+AP+BP=AB+AP+B''P,則當AP與PB''共線時,△APB的周長有最小值.【詳解】解:(1)如圖△A′B′C′為所求圖形.(2)①如圖:點P為所求點.②∵△ABP的周長=AB+AP+BP=AB+AP+B''P∴當AP與PB''共線時,△APB的周長有最小值.∴△APB的周長的最小值AB+AB''=+3故答案為+3【點睛】本題考查軸對稱變換,勾股定理,最短路徑問題,解題關鍵是熟練掌握軸對稱的性質.20、(1);(2)80米/分;(3)6分鐘【解析】

(1)根據(jù)圖示,設線段AB的表達式為:y=kx+b,把把(4,240),(16,0)代入得到關于k,b的二元一次方程組,解之,即可得到答案,

(2)根據(jù)線段OA,求出甲的速度,根據(jù)圖示可知:乙在點B處追上甲,根據(jù)速度=路程÷時間,計算求值即可,

(3)根據(jù)圖示,求出二者相遇時與出發(fā)點的距離,進而求出與終點的距離,結合(2)的結果,分別計算出相遇后,到達終點甲和乙所用的時間,二者的時間差即可所求答案.【詳解】(1)根據(jù)題意得:

設線段AB的表達式為:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即線段AB的表達式為:y=-20x+320(4≤x≤16),

(2)又線段OA可知:甲的速度為:=60(米/分),

乙的步行速度為:=80(米/分),

答:乙的步行速度為80米/分,

(3)在B處甲乙相遇時,與出發(fā)點的距離為:240+(16-4)×60=960(米),

與終點的距離為:2400-960=1440(米),

相遇后,到達終點甲所用的時間為:=24(分),

相遇后,到達終點乙所用的時間為:=18(分),

24-18=6(分),

答:乙比甲早6分鐘到達終點.【點睛】本題考查了一次函數(shù)的應用,正確掌握分析函數(shù)圖象是解題的關鍵.21、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】

(1)根據(jù)軸對稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內角和得出x+y即可得出結論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結論.【詳解】(1)補全圖形如圖1所示,根據(jù)軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質,軸對稱的性質,等腰三角形的性質,三角形的內角和定理,作出圖形是解本題的關鍵.22、(1)見解析;(2)正方形的邊長為.【解析】

(1)由正方形的性質得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結論;(2)證出∠BG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論