版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年東莞市高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是()①;②;③與平面所成的角為;④四面體的體積為.A.個 B.個 C.個 D.個2.設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:①若,,則②若,,,則③若,,則④若,,則其中正確命題的序號是()A.①和② B.②和③ C.③和④ D.①和④3.已知a,b,c,d∈R,則下列不等式中恒成立的是()A.若a>b,c>d,則ac>bd B.若a>b,則C.若a>b>0,則(a﹣b)c>0 D.若a>b,則a﹣c>b﹣c4.在中,,BC邊上的高等于,則()A. B. C. D.5.趙爽是三國時期吳國的數(shù)學(xué)家,他創(chuàng)制了一幅“勾股圓方圖”,也稱“趙爽弦圖”,如圖,若在大正方形內(nèi)隨機取-點,這一點落在小正方形內(nèi)的概率為,則勾與股的比為()A. B. C. D.6.直線l:3x+4y+5=0被圓M:(x–2)2+(y–1)2=16截得的弦長為()A. B.5 C. D.107.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積等于()A.π B.πC.16π D.32π8.已知兩座燈塔和與海洋觀察站的距離都等于5,燈塔在觀察站的北偏東,燈塔在觀察站的南偏東,則燈塔與燈塔的距離為()A. B. C. D.9.在正方體中,、分別是棱和的中點,為上底面的中心,則直線與所成的角為()A.30° B.45° C.60° D.90°10.若圓上有且僅有兩個點到直線的距離等于,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”,已知正項數(shù)列為“調(diào)和數(shù)列”,且,則的最大值是__________.12.已知數(shù)列的前項和為,,則__________.13.若、、這三個的數(shù)字可適當(dāng)排序后成為等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則________________.14.已知函數(shù)一個周期的圖象(如下圖),則這個函數(shù)的解析式為__________.15.若滿足約束條件則的最大值為__________.16.正六棱柱各棱長均為,則一動點從出發(fā)沿表面移動到時的最短路程為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)當(dāng)時,求的值;(2)設(shè)函數(shù),已知在中,內(nèi)角、、的對邊分別為、、,若,,,求的取值范圍.18.在中,(Ⅰ)求;(Ⅱ)若,,求的值19.如圖,四棱錐P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中點,M(1)求證:AE⊥平面PAD;(2)若AB=AP=2,求三棱錐P-ACM的體積.20.中,內(nèi)角,,所對的邊分別是,,,已知.(1)求角的大??;(2)設(shè),的面積為,求的值.21.已知數(shù)列是等差數(shù)列,,.(1)從第幾項開始;(2)求數(shù)列前n項和的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)題意,依次分析命題:對于①,可利用反證法說明真假;對于②,為等腰直角三角形,平面,得平面,根據(jù)勾股定理逆定理可知;對于③,由與平面所成的角為知真假;對于④,利用等體積法求出所求體積進(jìn)行判定即可,綜合可得答案.【詳解】在四邊形中,,,則,可得,由,若,且,可得平面,平面,,這與矛盾,故①不正確;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正確;由②知平面,則直線與平面所成的角為,且有,,則為等腰直角三角形,且,則.故③不正確;四面體的體積為,故④不正確.故選:B.【點睛】本題主要考查了直線與平面所成的角,以及三棱錐的體積的計算,考查了空間想象能力,推理論證能力,解題的關(guān)鍵是須對每一個進(jìn)行逐一判定.2、A【解析】
根據(jù)線面平行性質(zhì)定理,結(jié)合線面垂直的定義,可得①是真命題;根據(jù)面面平行的性質(zhì)結(jié)合線面垂直的性質(zhì),可得②是真命題;在正方體中舉出反例,可得平行于同一個平面的兩條直線不一定平行,垂直于同一個平面和兩個平面也不一定平行,可得③④不正確.由此可得本題的答案.【詳解】解:對于①,因為,所以經(jīng)過作平面,使,可得,又因為,,所以,結(jié)合得.由此可得①是真命題;對于②,因為且,所以,結(jié)合,可得,故②是真命題;對于③,設(shè)直線、是位于正方體上底面所在平面內(nèi)的相交直線,而平面是正方體下底面所在的平面,則有且成立,但不能推出,故③不正確;對于④,設(shè)平面、、是位于正方體經(jīng)過同一個頂點的三個面,則有且,但是,推不出,故④不正確.綜上所述,其中正確命題的序號是①和②故選:【點睛】本題給出關(guān)于空間線面位置關(guān)系的命題,要我們找出其中的真命題,著重考查了線面平行、面面平行的性質(zhì)和線面垂直、面面垂直的判定與性質(zhì)等知識,屬于中檔題.3、D【解析】
根據(jù)不等式的性質(zhì)判斷.【詳解】當(dāng)時,A不成立;當(dāng)時,B不成立;當(dāng)時,C不成立;由不等式的性質(zhì)知D成立.故選D.【點睛】本題考查不等式的性質(zhì),不等式的性質(zhì)中,不等式兩邊乘以同一個正數(shù),不等式號方向不變,兩邊乘以同一個負(fù)數(shù),不等式號方向改變,這個性質(zhì)容易出現(xiàn)錯誤:一是不區(qū)分所乘數(shù)的正負(fù),二是不區(qū)分是否為1.4、C【解析】試題分析:設(shè),故選C.考點:解三角形.5、B【解析】
分別求解出小正方形和大正方形的面積,可知面積比為,從而構(gòu)造方程可求得結(jié)果.【詳解】由圖形可知,小正方形邊長為小正方形面積為:,又大正方形面積為:,即:解得:本題正確選項:【點睛】本題考查幾何概型中的面積型的應(yīng)用,關(guān)鍵是能夠利用概率構(gòu)造出關(guān)于所求量的方程.6、C【解析】
求出圓心到直線l的距離,再利用弦長公式進(jìn)行求解即可.【詳解】∵圓(x–2)2+(y–1)2=16,∴圓心(2,1),半徑r=4,圓心到直線l:3x+4y+5=0的距離d==3,∴直線3x+4y+5=0被圓(x–2)2+(y–1)2=16截得的弦長l=2=2.故選C.【點睛】本題考查了直線被圓截得的弦長公式,主要用到了點到直線的距離公式.7、B【解析】
作軸截面,圓錐的軸截面是等腰三角形,外接球的截面是圓為球的大圓是的外接圓,由圖可得球的半徑與圓錐的關(guān)系.【詳解】如圖,作軸截面,圓錐的軸截面是等腰三角形,的外接圓是球的大圓,設(shè)該圓錐的外接球的半徑為R,依題意得,R2=(3-R)2+()2,解得R=2,所以所求球的體積V=πR3=π×23=π,故選B.【點睛】本題考查球的體積,關(guān)鍵是確定圓錐的外接球與圓錐之間的關(guān)系,即球半徑與圓錐的高和底面半徑之間的聯(lián)系,而這個聯(lián)系在其軸截面中正好體現(xiàn).8、B【解析】
根據(jù)題意畫出ABC的相對位置,再利用正余弦定理計算.【詳解】如圖所示,,,選B.【點睛】本題考查解三角形畫出相對位置是關(guān)鍵,屬于基礎(chǔ)題.9、A【解析】
先通過平移將兩條異面直線平移到同一個起點,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.【詳解】解:先畫出圖形,將平移到,為直線與所成的角,設(shè)正方體的邊長為,,,,,,故選:.【點睛】本題主要考查了異面直線及其所成的角,以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】
先求出圓心到直線的距離,然后結(jié)合圖象,即可得到本題答案.【詳解】由題意可得,圓心到直線的距離為,故由圖可知,當(dāng)時,圓上有且僅有一個點到直線的距離等于;當(dāng)時,圓上有且僅有三個點到直線的距離等于;當(dāng)則的取值范圍為時,圓上有且僅有兩個點到直線的距離等于.故選:B【點睛】本題主要考查直線與圓的綜合問題,數(shù)學(xué)結(jié)合是解決本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】因為數(shù)列是“調(diào)和數(shù)列”,所以,即數(shù)列是等差數(shù)列,所以,,所以,,當(dāng)且僅當(dāng)時等號成立,因此的最大值為1.點睛:本題考查創(chuàng)新意識,關(guān)鍵是對新定義的理解與轉(zhuǎn)化,由“調(diào)和數(shù)列”的定義及已知是“調(diào)和數(shù)列”,得數(shù)列是等差數(shù)列,從而利用等差數(shù)列的性質(zhì)可化簡已知數(shù)列的和,結(jié)合基本不等式求得最值.本題難度不大,但考查的知識較多,要熟練掌握各方面的知識與方法,才能正確求解.12、【解析】分析:由,當(dāng)時,當(dāng)時,相減可得,則,由此可以求出數(shù)列的通項公式詳解:當(dāng)時,當(dāng)時由可得二式相減可得:又則數(shù)列是公比為的等比數(shù)列點睛:本題主要考查了等比數(shù)列的通項公式即數(shù)列遞推式,在解答此類問題時看到,則用即可算出,需要注意討論的情況。13、【解析】
由,,可知,、、成等比數(shù)列,可得出,由、、或、、成等差數(shù)列,可得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,即可計算出的值.【詳解】由于,,若不是等比中項,則有或,兩個等式左邊均為正數(shù),右邊均為負(fù)數(shù),不合題意,則必為等比中項,所以,將三個數(shù)由大到小依次排列,則有、、成等差數(shù)列或、、成等差數(shù)列.①若、、成等差數(shù)列,則,聯(lián)立,解得,此時,;②若、、成等差數(shù)列,則,聯(lián)立,解得,此時,.綜上所述,.故答案為:.【點睛】本題考查等比數(shù)列和等差數(shù)列定義的應(yīng)用,根據(jù)題意列出方程組是解題的關(guān)鍵,考查推理能力與計算能力,屬于中等題.14、【解析】
由函數(shù)的圖象可得T=﹣,解得:T==π,解得ω=1.圖象經(jīng)過(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式為:f(x)=.故答案為f(x)=.15、【解析】
作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時,.【詳解】不等式組表示的可行域是以為頂點的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點處取得,易知當(dāng)時,.【點睛】線性規(guī)劃問題是高考中??伎键c,主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.16、【解析】
根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側(cè)面和上表面到D1的路程最短為故答案為:.【點睛】本題主要考查了空間幾何體展形圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由共線向量的坐標(biāo)運算化簡可得,將化切后代入即可(2)利用向量的坐標(biāo)運算化簡,利用正弦定理求,根據(jù)角的范圍求值域即可.【詳解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范圍是.【點睛】本題主要考查了向量數(shù)量積的坐標(biāo)運算,三角恒等式,型函數(shù)的值域,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由正弦定理、二倍角公式,結(jié)合可將已知邊角關(guān)系式化簡為,從而求得,根據(jù)可求得;(Ⅱ)由三角形面積公式可求得;利用余弦定理可構(gòu)造方程求得結(jié)果.【詳解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、余弦定理和三角形面積公式的應(yīng)用,屬于??碱}型.19、(1)見證明;(2)3【解析】
(1)本題首先可以通過菱形的相關(guān)性質(zhì)證明出AE⊥AD,然后通過PA⊥菱形ABCD所在的平面證明出PA⊥AE,最后通過線面垂直的相關(guān)性質(zhì)即可得出結(jié)果;(2)可以將三角形APM當(dāng)成三棱錐P-ACM的底面,將AE當(dāng)成三棱錐P-ACM的高,最后通過三棱錐的體積計算公式即可得出結(jié)果.【詳解】(1)證明:連接AC,因為底面ABCD為菱形,∠ABC=60°,所以因為E是BC的中點,所以AE⊥BC,因為AD//BC,所以AE⊥AD,因為PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE,又因為PA∩AD=A,所以AE⊥平面PAD.(2)AB=AP=2,則AD=2,AE=3所以Vp【點睛】本題考查立體幾何的相關(guān)性質(zhì),主要考查線面垂直的證明以及三棱錐體積的求法,可以通過證明平面外一條直線垂直平面內(nèi)的兩條相交直線來證明線面垂直,考查推理能力,是中檔題.20、(1)(2)【解析】
(1)利用正弦定理可將已知等式化為,利用兩角和差余弦公式展開整理可求得,根據(jù)可求得結(jié)果;(2)利用三角形面積公式可構(gòu)造方程求出;利用余弦定理可直接求得結(jié)果.【詳解】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年交通設(shè)施租賃與維護(hù)服務(wù)合同3篇
- 淘寶天貓運營的課程設(shè)計
- 貓咪喂養(yǎng)課程設(shè)計
- 二零二五年度個人住房公積金貸款貸款額度提升合同范本3篇
- 2025年度老舊小區(qū)改造安裝合同3篇
- 2025版黃沙原料批發(fā)與配送服務(wù)合同范本3篇
- 板肋梁樓課程設(shè)計
- 二零二五年家居裝飾加盟店合作協(xié)議書3篇
- 2025版環(huán)境監(jiān)測與污染防治技術(shù)服務(wù)合同標(biāo)準(zhǔn)范本3篇
- 素描課程設(shè)計人像
- GB/T 44890-2024行政許可工作規(guī)范
- 軍工合作合同范例
- 2025年中國稀土集團(tuán)總部部分崗位社會公開招聘管理單位筆試遴選500模擬題附帶答案詳解
- 超市柜臺長期出租合同范例
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測試語文試題(含答案)
- 【8物(科)期末】合肥市第四十五中學(xué)2023-2024學(xué)年八年級上學(xué)期期末物理試題
- 統(tǒng)編版2024-2025學(xué)年三年級語文上冊期末學(xué)業(yè)質(zhì)量監(jiān)測試卷(含答案)
- 從0 開始運營抖?音號sop 文檔
- Module7 Unit2 This little girl can't walk(Period 1) (教學(xué)實錄) -2024-2025學(xué)年外研版(三起)英語五年級上冊
- 2024年01月11190當(dāng)代中國政治制度期末試題答案
- 2024-2025學(xué)年深圳市初三適應(yīng)性考試模擬試卷歷史試卷
評論
0/150
提交評論