2023-2024學(xué)年山東省武城縣第二中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
2023-2024學(xué)年山東省武城縣第二中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
2023-2024學(xué)年山東省武城縣第二中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
2023-2024學(xué)年山東省武城縣第二中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
2023-2024學(xué)年山東省武城縣第二中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年山東省武城縣第二中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.為研究需要,統(tǒng)計了兩個變量x,y的數(shù)據(jù)·情況如下表:其中數(shù)據(jù)x1、x2、x3…xn,和數(shù)據(jù)y1、y2、y3,…yn的平均數(shù)分別為和,并且計算相關(guān)系數(shù)r=-1.8,回歸方程為,有如下幾個結(jié)論:①點(diǎn)(,)必在回歸直線上,即=b+;②變量x,y的相關(guān)性強(qiáng);③當(dāng)x=x1,則必有;④b<1.其中正確的結(jié)論個數(shù)為A.1 B.2 C.3 D.42.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或33.已知數(shù)列是公差不為零的等差數(shù)列,是等比數(shù)列,,,則下列說法正確的是()A. B.C. D.與的大小不確定4.已知點(diǎn)均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.5.中,若,則的形狀是()A.等腰三角形 B.等邊三角形C.銳角三角形 D.直角三角形6.在中,,,則的外接圓半徑為()A.1 B.2 C. D.7.設(shè)的內(nèi)角,,的對邊分別為,,.若,,,且,則()A. B. C. D.8.已知平面向量與的夾角為,且,則()A. B. C. D.9.中,分別是內(nèi)角的對邊,且,,則等于()A. B. C. D.10.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.24二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列中,,,,則的值為_____.12.已知扇形的圓心角為,半徑為5,則扇形的弧長_________.13.已知數(shù)列的通項(xiàng)公式是,若將數(shù)列中的項(xiàng)從小到大按如下方式分組:第一組:,第二組:,第三組:,…,則2018位于第________組.14.在中,給出如下命題:①是所在平面內(nèi)一定點(diǎn),且滿足,則是的垂心;②是所在平面內(nèi)一定點(diǎn),動點(diǎn)滿足,,則動點(diǎn)一定過的重心;③是內(nèi)一定點(diǎn),且,則;④若且,則為等邊三角形,其中正確的命題為_____(將所有正確命題的序號都填上)15.200名職工年齡分布如圖所示,從中隨機(jī)抽取40名職工作樣本,采用系統(tǒng)抽樣方法,按1~200編號,分為40組,分別為1~5,6~10,…,196~200,若第5組抽取號碼為22,則第8組抽取號碼為________.若采用分層抽樣,40歲以下年齡段應(yīng)抽取________人.16.函數(shù)的反函數(shù)為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的頂點(diǎn)與原點(diǎn)重合,其始邊與軸正半軸重合,終邊與單位圓交于點(diǎn),若,且.(1)求的值;(2)求的值.18.已知圓內(nèi)有一點(diǎn),過點(diǎn)作直線交圓于兩點(diǎn).(1)當(dāng)直線經(jīng)過圓心時,求直線的方程;(2)當(dāng)弦被點(diǎn)平分時,寫出直線的方程.19.已知向量,(1)若,求;(2)若,求.20.已知長方體中,,點(diǎn)N是AB的中點(diǎn),點(diǎn)M是的中點(diǎn).建立如圖所示的空間直角坐標(biāo)系.(1)寫出點(diǎn)的坐標(biāo);(2)求線段的長度;(3)判斷直線與直線是否互相垂直,說明理由.21.如圖,在四邊形中,已知,,,,設(shè).(1)求(用表示);(2)求的最小值.(結(jié)果精確到米)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)回歸方程的性質(zhì)和相關(guān)系數(shù)的性質(zhì)求解.【詳解】回歸直線經(jīng)過樣本中心點(diǎn),故①正確;變量的相關(guān)系數(shù)的絕對值越接近與1,則兩個變量的相關(guān)性越強(qiáng),故②正確;根據(jù)回歸方程的性質(zhì),當(dāng)時,不一定有,故③錯誤;由相關(guān)系數(shù)知負(fù)相關(guān),所以,故④正確;故選C.【點(diǎn)睛】本題考查回歸直線和相關(guān)系數(shù),注意根據(jù)回歸方程得出的是估計值不是準(zhǔn)確值.2、D【解析】

根據(jù)直線的平行關(guān)系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗(yàn),當(dāng)或時,兩條直線均平行.故選:D【點(diǎn)睛】此題考查根據(jù)直線平行關(guān)系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.3、A【解析】

設(shè)等比數(shù)列的公比為,結(jié)合題中條件得出且,將、、、用與表示,利用因式分解思想以及基本不等式可得出與的不等關(guān)系,并結(jié)合等差數(shù)列下標(biāo)和性質(zhì)可得出與的大小關(guān)系.【詳解】設(shè)等比數(shù)列的公比為,由于等差數(shù)列是公差不為零,則,從而,且,得,,,即,另一方面,由等差數(shù)列的性質(zhì)可得,因此,,故選:A.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列性質(zhì)的應(yīng)用,解題的關(guān)鍵在于將等比中的項(xiàng)利用首項(xiàng)和公比表示,并進(jìn)行因式分解,考查分析問題和解決問題的能力,屬于中等題.4、A【解析】

設(shè)是的外心,則三棱錐體積最大時,平面,球心在上.由此可計算球半徑.【詳解】如圖,設(shè)是的外心,則三棱錐體積最大時,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設(shè)球半徑為,則由得,解得,∴球體積為.故選A.【點(diǎn)睛】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.5、D【解析】

根據(jù)正弦定理,得到,進(jìn)而得到,再由兩角和的正弦公式,即可得出結(jié)果.【詳解】因?yàn)?,所以,所以,即,所以,又因此,所以,即三角形為直角三角?故選D【點(diǎn)睛】本題主要考查三角形形狀的判斷,熟記正弦定理即可,屬于??碱}型.6、A【解析】

由同角三角函數(shù)關(guān)系式,先求得.再結(jié)合正弦定理即可求得的外接圓半徑.【詳解】中,由同角三角函數(shù)關(guān)系式可得由正弦定理可得所以,即的外接圓半徑為1故選:A【點(diǎn)睛】本題考查了同角三角函數(shù)關(guān)系式的應(yīng)用,正弦定理求三角形外接圓半徑,屬于基礎(chǔ)題.7、B【解析】由余弦定理得:,所以,即,解得:或,因?yàn)?,所以,故選B.考點(diǎn):余弦定理.8、A【解析】

根據(jù)平面向量數(shù)量積的運(yùn)算法則,將平方運(yùn)算可得結(jié)果.【詳解】∵,∴,∴cos=4,∴,故選A.【點(diǎn)睛】本題考查了利用平面向量的數(shù)量積求模的應(yīng)用問題,考查了數(shù)量積與模之間的轉(zhuǎn)化,是基礎(chǔ)題目.9、D【解析】試題分析:由已知得,解得(舍)或,又因?yàn)?,所以,由正弦定理?考點(diǎn):1、倍角公式;2、正弦定理.10、D【解析】設(shè)放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D二、填空題:本大題共6小題,每小題5分,共30分。11、1275【解析】

根據(jù)遞推關(guān)系式可求得,從而利用并項(xiàng)求和的方法將所求的和轉(zhuǎn)化為,利用等差數(shù)列求和公式求得結(jié)果.【詳解】由得:則,即本題正確結(jié)果:【點(diǎn)睛】本題考查并項(xiàng)求和法、等差數(shù)列求和公式的應(yīng)用,關(guān)鍵是能夠利用遞推關(guān)系式得到數(shù)列相鄰兩項(xiàng)之間的關(guān)系,從而采用并項(xiàng)的方式來進(jìn)行求解.12、【解析】

根據(jù)扇形的弧長公式進(jìn)行求解即可.【詳解】∵扇形的圓心角α,半徑為r=5,∴扇形的弧長l=rα5.故答案為:.【點(diǎn)睛】本題主要考查扇形的弧長公式的計算,熟記弧長公式是解決本題的關(guān)鍵,屬于基礎(chǔ)題.13、1【解析】

根據(jù)題意可分析第一組、第二組、第三組、…中的數(shù)的個數(shù)及最后的數(shù),從中尋找規(guī)律使問題得到解決.【詳解】根據(jù)題意:第一組有2=1×2個數(shù),最后一個數(shù)為4;第二組有4=2×2個數(shù),最后一個數(shù)為12,即2×(2+4);第三組有6=2×3個數(shù),最后一個數(shù)為24,即2×(2+4+6);…∴第n組有2n個數(shù),其中最后一個數(shù)為2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴當(dāng)n=31時,第31組的最后一個數(shù)為2×31×1=1984,∴當(dāng)n=1時,第1組的最后一個數(shù)為2×1×33=2112,∴2018位于第1組.故答案為1.【點(diǎn)睛】本題考查觀察與分析問題的能力,考查歸納法的應(yīng)用,從有限項(xiàng)得到一般規(guī)律是解決問題的關(guān)鍵點(diǎn),屬于中檔題.14、①②④.【解析】

①:運(yùn)用已知的式子進(jìn)行合理的變形,可以得到,進(jìn)而得到,再次運(yùn)用等式同樣可以得到,,這樣可以證明出是的垂心;②:運(yùn)用平面向量的減法的運(yùn)算法則、加法的幾何意義,結(jié)合平面向量共線定理,可以證明本命題是真命題;③:運(yùn)用平面向量的加法的幾何意義以及平面向量共線定理,結(jié)合面積公式,可證明出本結(jié)論是錯誤的;④:運(yùn)用平面向量的加法幾何意義和平面向量的數(shù)量積的定義,可以證明出本結(jié)論是正確的.【詳解】①:,同理可得:,,所以本命題是真命題;②:,設(shè)的中點(diǎn)為,所以有,因此動點(diǎn)一定過的重心,故本命題是真命題;③:由,可得設(shè)的中點(diǎn)為,,,故本命題是假命題;④:由可知角的平分線垂直于底邊,故是等腰三角形,由可知:,所以是等邊三角形,故本命題是真命題,因此正確的命題為①②④.【點(diǎn)睛】本題考查了平面向量的加法的幾何意義和平面向量數(shù)量積的運(yùn)算,考查了數(shù)形結(jié)合思想.15、371【解析】

由系統(tǒng)抽樣,編號是等距出現(xiàn)的規(guī)律可得,分層抽樣是按比例抽取人數(shù).【詳解】第8組編號是22+5+5+5=37,分層抽樣,40歲以下抽取的人數(shù)為50%×40=1(人).故答案為:37;1.【點(diǎn)睛】本題考查系統(tǒng)抽樣和分層抽樣,屬于基礎(chǔ)題.16、【解析】

由得,即,把與互換即可得出【詳解】由得所以把與互換,可得故答案為:【點(diǎn)睛】本題考查的是反函數(shù)的求法,較簡單.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)平方處理求出,根據(jù)角的范圍可得,即可得解;(2)變形處理,結(jié)合(1)已計算的結(jié)果即可求解.【詳解】(1)由題:角的頂點(diǎn)與原點(diǎn)重合,其始邊與軸正半軸重合,終邊與單位圓交于點(diǎn),若,,即,兩邊平方可得:,,所以;(2)【點(diǎn)睛】此題考查同角三角函數(shù)的關(guān)系,根據(jù)平方關(guān)系處理同角正余弦的和差積三者關(guān)系,利用平方關(guān)系合理變形求值.18、(1)(2)【解析】

(1)求得圓的圓心為,利用直線的點(diǎn)斜式方程,即可求解;(2)當(dāng)弦被點(diǎn)平分時,,得此直線的斜率為,結(jié)合直線的點(diǎn)斜式方程,即可求解.【詳解】(1)由題意得,圓的圓心為,因?yàn)橹本€過點(diǎn),所以直線的斜率為2,直線的方程為,即直線的方程.(2)當(dāng)弦被點(diǎn)平分時,,此時直線的斜率為,所以直線的方程為,即直線的方程.【點(diǎn)睛】本題主要考查了直線的方程的求解,以及圓的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用直線與圓的位置關(guān)系和直線的點(diǎn)斜式方程是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.19、(1)3;(2)或【解析】

(1)由,得,又由,即可得到本題答案;(2)由,得,即,由此即可得到本題答案.【詳解】解:(1)由,得,即,(2)由,得,即,又,解得或.【點(diǎn)睛】本題主要考查平面向量與三角函數(shù)求值的綜合問題,齊次式法求值是解決此類問題的常用方法.20、(1),,;(2)線段的長度分別為;(3)不垂直,理由見解析【解析】

(1)由已知條件,利用長方體的結(jié)構(gòu)特征,能求出點(diǎn)的坐標(biāo).

(2)直接利用兩點(diǎn)間距離公式公式求解.(3)求出,,計算數(shù)量積即可判斷是否垂直.【詳解】解:(1)兩直線垂直,證明:由于為坐標(biāo)原點(diǎn),所以,由得:,因?yàn)辄c(diǎn)N是AB的中點(diǎn),點(diǎn)M是的中點(diǎn),,;(2)由兩點(diǎn)距離公式得:,;(3)直線與直線不垂直,理由:由(1)中各點(diǎn)坐標(biāo)得:,,與不垂直,所以直線與直線不垂直.【點(diǎn)睛】本題考查空間中點(diǎn)的坐標(biāo)的求法,考查線段長的求法,以及利用向量的坐標(biāo)運(yùn)算判斷垂直,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).21、(1);(2)米【解析】

(1)在中,由正弦定理,求得,再在中,利用正弦定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論