版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2019年全國統(tǒng)一高考數(shù)學(xué)試卷(文科)(新課標(biāo)Ⅰ)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則=A.2 B. C. D.12.已知集合,則A. B. C. D.3.已知,則A. B. C. D.4.古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26cm,則其身高可能是A.165cm B.175cm C.185cm D.190cm5.函數(shù)f(x)=在[—π,π]的圖像大致為A B.C D.6.某學(xué)校為了解1000名新生的身體素質(zhì),將這些學(xué)生編號為1,2,…,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取100名學(xué)生進(jìn)行體質(zhì)測驗(yàn),若46號學(xué)生被抽到,則下面4名學(xué)生中被抽到的是A.8號學(xué)生 B.200號學(xué)生 C.616號學(xué)生 D.815號學(xué)生7.tan255°=A.-2- B.-2+ C.2- D.2+8.已知非零向量滿足,且,則與的夾角為A. B. C. D.9.如圖是求的程序框圖,圖中空白框中應(yīng)填入A.A= B.A= C.A= D.A=10.雙曲線C:的一條漸近線的傾斜角為130°,則C的離心率為A.2sin40° B.2cos40° C. D.11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.312.已知橢圓C的焦點(diǎn)為,過F2的直線與C交于A,B兩點(diǎn).若,,則C的方程為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為___________.14.記Sn為等比數(shù)列{an}的前n項(xiàng)和.若,則S4=___________.15.函數(shù)的最小值為___________.16.已知∠ACB=90°,P為平面ABC外一點(diǎn),PC=2,點(diǎn)P到∠ACB兩邊AC,BC的距離均為,那么P到平面ABC的距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。(一)必考題:60分。17.某商場為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對該商場的服務(wù)給出滿意或不滿意的評價(jià),得到下面列聯(lián)表:滿意不滿意男顧客4010女顧客3020(1)分別估計(jì)男、女顧客對該商場服務(wù)滿意概率;(2)能否有95%的把握認(rèn)為男、女顧客對該商場服務(wù)的評價(jià)有差異?附:.P(K2≥k)0.0500.0100.001k3.8416.63510.82818.記Sn為等差數(shù)列{an}前n項(xiàng)和,已知S9=-a5.(1)若a3=4,求{an}的通項(xiàng)公式;(2)若a1>0,求使得Sn≥an的n的取值范圍.19.如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).(1)證明:MN∥平面C1DE;(2)求點(diǎn)C到平面C1DE的距離.20.已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.21.已知點(diǎn)A,B關(guān)于坐標(biāo)原點(diǎn)O對稱,│AB│=4,⊙M過點(diǎn)A,B且與直線x+2=0相切.(1)若A在直線x+y=0上,求⊙M的半徑.(2)是否存在定點(diǎn)P,使得當(dāng)A運(yùn)動(dòng)時(shí),│MA│-│MP│為定值?并說明理由.(二)選考題:共10分。請考生在第22、23題中任選一題作答,如果多做,則按所做的第一題計(jì)分。22.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求C和l的直角坐標(biāo)方程;(2)求C上的點(diǎn)到l距離的最小值.23.已知a,b,c正數(shù),且滿足abc=1.證明:(1);(2).
絕密★啟用前2019年普通高等學(xué)校招生全國統(tǒng)一考試文科數(shù)學(xué)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、考生號等填寫在答題卡和試卷指定位置上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡對應(yīng)題目的答案標(biāo)號涂黑。如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上。寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則=A.2 B. C. D.1【答案】C【解析】【分析】先由復(fù)數(shù)的除法運(yùn)算(分母實(shí)數(shù)化),求得,再求.【詳解】因?yàn)?,所以,所以,故選C.【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)模的計(jì)算.本題也可以運(yùn)用復(fù)數(shù)模的運(yùn)算性質(zhì)直接求解.2.已知集合,則A. B. C. D.【答案】C【解析】【分析】先求,再求.【詳解】由已知得,所以,故選C.【點(diǎn)睛】本題主要考查交集、補(bǔ)集的運(yùn)算.滲透了直觀想象素養(yǎng).使用補(bǔ)集思想得出答案.3.已知,則A. B. C. D.【答案】B【解析】分析】運(yùn)用中間量比較,運(yùn)用中間量比較【詳解】則.故選B.【點(diǎn)睛】本題考查指數(shù)和對數(shù)大小的比較,滲透了直觀想象和數(shù)學(xué)運(yùn)算素養(yǎng).采取中間變量法,利用轉(zhuǎn)化與化歸思想解題.4.古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26cm,則其身高可能是A.165cm B.175cm C.185cm D.190cm【答案】B【解析】分析】理解黃金分割比例的含義,應(yīng)用比例式列方程求解.【詳解】設(shè)人體脖子下端至肚臍的長為xcm,肚臍至腿根的長為ycm,則,得.又其腿長為105cm,頭頂至脖子下端的長度為26cm,所以其身高約為42.07+5.15+105+26=178.22,接近175cm.故選B.【點(diǎn)睛】本題考查類比歸納與合情推理,滲透了邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng).采取類比法,利用轉(zhuǎn)化思想解題.5.函數(shù)f(x)=在[—π,π]的圖像大致為A. B.C. D.【答案】D【解析】【分析】先判斷函數(shù)的奇偶性,得是奇函數(shù),排除A,再注意到選項(xiàng)的區(qū)別,利用特殊值得正確答案.【詳解】由,得是奇函數(shù),其圖象關(guān)于原點(diǎn)對稱.又.故選D.【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與圖象,滲透了邏輯推理、直觀想象和數(shù)學(xué)運(yùn)算素養(yǎng).采取性質(zhì)法或賦值法,利用數(shù)形結(jié)合思想解題.6.某學(xué)校為了解1000名新生的身體素質(zhì),將這些學(xué)生編號為1,2,…,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取100名學(xué)生進(jìn)行體質(zhì)測驗(yàn),若46號學(xué)生被抽到,則下面4名學(xué)生中被抽到的是A.8號學(xué)生 B.200號學(xué)生 C.616號學(xué)生 D.815號學(xué)生【答案】C【解析】【分析】等差數(shù)列的性質(zhì).滲透了數(shù)據(jù)分析素養(yǎng).使用統(tǒng)計(jì)思想,逐個(gè)選項(xiàng)判斷得出答案.【詳解】詳解:由已知將1000名學(xué)生分成100個(gè)組,每組10名學(xué)生,用系統(tǒng)抽樣,46號學(xué)生被抽到,所以第一組抽到6號,且每組抽到的學(xué)生號構(gòu)成等差數(shù)列,公差,所以,若,則,不合題意;若,則,不合題意;若,則,符合題意;若,則,不合題意.故選C.【點(diǎn)睛】本題主要考查系統(tǒng)抽樣.7.tan255°=A.-2- B.-2+ C.2- D.2+【答案】D【解析】【分析】本題首先應(yīng)用誘導(dǎo)公式,將問題轉(zhuǎn)化成銳角三角函數(shù)的計(jì)算,進(jìn)一步應(yīng)用兩角和的正切公式計(jì)算求解.題目較易,注重了基礎(chǔ)知識、基本計(jì)算能力的考查.【詳解】詳解:=【點(diǎn)睛】三角函數(shù)的誘導(dǎo)公式、兩角和與差的三角函數(shù)、特殊角的三角函數(shù)值、運(yùn)算求解能力.8.已知非零向量滿足,且,則與的夾角為A. B. C. D.【答案】B【解析】【分析】本題主要考查利用平面向量數(shù)量積計(jì)算向量長度、夾角與垂直問題,滲透了轉(zhuǎn)化與化歸、數(shù)學(xué)計(jì)算等數(shù)學(xué)素養(yǎng).先由得出向量的數(shù)量積與其模的關(guān)系,再利用向量夾角公式即可計(jì)算出向量夾角.【詳解】因?yàn)?,所?0,所以,所以=,所以與的夾角為,故選B.【點(diǎn)睛】對向量夾角的計(jì)算,先計(jì)算出向量的數(shù)量積及各個(gè)向量的摸,在利用向量夾角公式求出夾角的余弦值,再求出夾角,注意向量夾角范圍為.9.如圖是求的程序框圖,圖中空白框中應(yīng)填入A.A= B.A= C.A= D.A=【答案】A【解析】【分析】本題主要考查算法中的程序框圖,滲透閱讀、分析與解決問題等素養(yǎng),認(rèn)真分析式子結(jié)構(gòu)特征與程序框圖結(jié)構(gòu),即可找出作出選擇.【詳解】執(zhí)行第1次,是,因?yàn)榈谝淮螒?yīng)該計(jì)算=,=2,循環(huán),執(zhí)行第2次,,是,因?yàn)榈诙螒?yīng)該計(jì)算=,=3,,否,輸出,故循環(huán)體為,故選A.【點(diǎn)睛】秒殺速解認(rèn)真觀察計(jì)算式子的結(jié)構(gòu)特點(diǎn),可知循環(huán)體為.10.雙曲線C:的一條漸近線的傾斜角為130°,則C的離心率為A.2sin40° B.2cos40° C. D.【答案】D【解析】【分析】由雙曲線漸近線定義可得,再利用求雙曲線的離心率.【詳解】由已知可得,,故選D.【點(diǎn)睛】對于雙曲線:,有;對于橢圓,有,防止記混.11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.3【答案】A【解析】【分析】利用余弦定理推論得出a,b,c關(guān)系,在結(jié)合正弦定理邊角互換列出方程,解出結(jié)果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點(diǎn)睛】本題考查正弦定理及余弦定理推論的應(yīng)用.12.已知橢圓C的焦點(diǎn)為,過F2的直線與C交于A,B兩點(diǎn).若,,則C的方程為A. B. C. D.【答案】B【解析】【分析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得.所求橢圓方程為,故選B.法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補(bǔ),,兩式消去,得,解得.所求橢圓方程為,故選B.【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實(shí)了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為___________.【答案】【解析】【分析】本題根據(jù)導(dǎo)數(shù)的幾何意義,通過求導(dǎo)數(shù),確定得到切線的斜率,利用直線方程的點(diǎn)斜式求得切線方程【詳解】詳解:所以,所以,曲線在點(diǎn)處的切線方程為,即.【點(diǎn)睛】準(zhǔn)確求導(dǎo)數(shù)是進(jìn)一步計(jì)算的基礎(chǔ),本題易因?yàn)閷?dǎo)數(shù)的運(yùn)算法則掌握不熟,二導(dǎo)致計(jì)算錯(cuò)誤.求導(dǎo)要“慢”,計(jì)算要準(zhǔn),是解答此類問題的基本要求.14.記Sn為等比數(shù)列{an}的前n項(xiàng)和.若,則S4=___________.【答案】.【解析】【分析】本題根據(jù)已知條件,列出關(guān)于等比數(shù)列公比的方程,應(yīng)用等比數(shù)列的求和公式,計(jì)算得到.題目的難度不大,注重了基礎(chǔ)知識、基本計(jì)算能力的考查.【詳解】詳解:設(shè)等比數(shù)列的公比為,由已知,即解得,所以.【點(diǎn)睛】準(zhǔn)確計(jì)算,是解答此類問題的基本要求.本題由于涉及冪的乘方運(yùn)算、繁分式分式計(jì)算,部分考生易出現(xiàn)運(yùn)算錯(cuò)誤.一題多解:本題在求得數(shù)列公比后,可利用已知計(jì)算,避免繁分式計(jì)算.15.函數(shù)的最小值為___________.【答案】.【解析】【分析】本題首先應(yīng)用誘導(dǎo)公式,轉(zhuǎn)化得到二倍角的余弦,進(jìn)一步應(yīng)用二倍角的余弦公式,得到關(guān)于的二次函數(shù),從而得解.【詳解】,,當(dāng)時(shí),,故函數(shù)的最小值為.【點(diǎn)睛】解答本題的過程中,部分考生易忽視的限制,而簡單應(yīng)用二次函數(shù)的性質(zhì),出現(xiàn)運(yùn)算錯(cuò)誤.16.已知∠ACB=90°,P為平面ABC外一點(diǎn),PC=2,點(diǎn)P到∠ACB兩邊AC,BC的距離均為,那么P到平面ABC的距離為___________.【答案】.【解析】【分析】本題考查學(xué)生空間想象能力,合理畫圖成為關(guān)鍵,準(zhǔn)確找到在底面上的射影,使用線面垂直定理,得到垂直關(guān)系,勾股定理解決.【詳解】作分別垂直于,平面,連,知,,平面,平面,,.,,,為平分線,,又,.【點(diǎn)睛】畫圖視角選擇不當(dāng),線面垂直定理使用不夠靈活,難以發(fā)現(xiàn)垂直關(guān)系,問題即很難解決,將幾何體擺放成正常視角,是立體幾何問題解決的有效手段,幾何關(guān)系利于觀察,解題事半功倍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。(一)必考題:60分。17.某商場為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對該商場的服務(wù)給出滿意或不滿意的評價(jià),得到下面列聯(lián)表:滿意不滿意男顧客4010女顧客3020(1)分別估計(jì)男、女顧客對該商場服務(wù)滿意的概率;(2)能否有95%的把握認(rèn)為男、女顧客對該商場服務(wù)的評價(jià)有差異?附:.P(K2≥k)0.0500.0100.001k3.8416.63510.828【答案】(1);(2)能有的把握認(rèn)為男、女顧客對該商場服務(wù)的評價(jià)有差異.【解析】【分析】(1)從題中所給的列聯(lián)表中讀出相關(guān)的數(shù)據(jù),利用滿意的人數(shù)除以總的人數(shù),分別算出相應(yīng)的頻率,即估計(jì)得出的概率值;(2)利用公式求得觀測值與臨界值比較,得到能有的把握認(rèn)為男、女顧客對該商場服務(wù)的評價(jià)有差異.【詳解】(1)由題中表格可知,50名男顧客對商場服務(wù)滿意的有40人,所以男顧客對商場服務(wù)滿意率估計(jì)為,50名女顧客對商場滿意的有30人,所以女顧客對商場服務(wù)滿意率估計(jì)為,(2)由列聯(lián)表可知,所以能有的把握認(rèn)為男、女顧客對該商場服務(wù)的評價(jià)有差異.【點(diǎn)睛】該題考查的是有關(guān)概率與統(tǒng)計(jì)的知識,涉及到的知識點(diǎn)有利用頻率來估計(jì)概率,利用列聯(lián)表計(jì)算的值,獨(dú)立性檢驗(yàn),屬于簡單題目.18.記Sn為等差數(shù)列{an}的前n項(xiàng)和,已知S9=-a5.(1)若a3=4,求{an}的通項(xiàng)公式;(2)若a1>0,求使得Sn≥an的n的取值范圍.【答案】(1);(2).【解析】【分析】(1)首項(xiàng)設(shè)出等差數(shù)列的首項(xiàng)和公差,根據(jù)題的條件,建立關(guān)于和的方程組,求得和的值,利用等差數(shù)列的通項(xiàng)公式求得結(jié)果;(2)根據(jù)題意有,根據(jù),可知,根據(jù),得到關(guān)于的不等式,從而求得結(jié)果.【詳解】(1)設(shè)等差數(shù)列的首項(xiàng)為,公差為,根據(jù)題意有,解答,所以,所以等差數(shù)列的通項(xiàng)公式為;(2)由條件,得,即,因?yàn)?,所以,并且有,所以有,由得,整理得,因?yàn)椋杂?,即,解得,所以的取值范圍是:【點(diǎn)睛】該題考查的是有關(guān)數(shù)列的問題,涉及到的知識點(diǎn)有等差數(shù)列的通項(xiàng)公式,等差數(shù)列的求和公式,在解題的過程中,需要認(rèn)真分析題意,熟練掌握基礎(chǔ)知識是正確解題的關(guān)鍵.19.如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).(1)證明:MN∥平面C1DE;(2)求點(diǎn)C到平面C1DE的距離.【答案】(1)見解析;(2).【解析】【分析】(1)利用三角形中位線和可證得,證得四邊形為平行四邊形,進(jìn)而證得,根據(jù)線面平行判定定理可證得結(jié)論;(2)根據(jù)題意求得三棱錐的體積,再求出的面積,利用求得點(diǎn)C到平面的距離,得到結(jié)果.【詳解】(1)連接,,分別為,中點(diǎn)為的中位線且又為中點(diǎn),且且四邊形平行四邊形,又平面,平面平面(2)在菱形中,為中點(diǎn),所以,根據(jù)題意有,,因?yàn)槔庵鶠橹崩庵杂衅矫?,所以,所以,設(shè)點(diǎn)C到平面的距離為,根據(jù)題意有,則有,解得,所以點(diǎn)C到平面的距離為.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識點(diǎn)有線面平行的判定,點(diǎn)到平面的距離的求解,在解題的過程中,注意要熟記線面平行的判定定理的內(nèi)容,注意平行線的尋找思路,再者就是利用等積法求點(diǎn)到平面的距離是文科生??嫉膬?nèi)容.20.已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.【答案】(1)見解析;(2).【解析】【分析】(1)求導(dǎo)得到導(dǎo)函數(shù)后,設(shè)為進(jìn)行再次求導(dǎo),可判斷出當(dāng)時(shí),,當(dāng)時(shí),,從而得到單調(diào)性,由零點(diǎn)存在定理可判斷出唯一零點(diǎn)所處的位置,證得結(jié)論;(2)構(gòu)造函數(shù),通過二次求導(dǎo)可判斷出,;分別在,,和的情況下根據(jù)導(dǎo)函數(shù)的符號判斷單調(diào)性,從而確定恒成立時(shí)的取值范圍.【詳解】(1)令,則當(dāng)時(shí),令,解得:當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞增;在上單調(diào)遞減又,,即當(dāng)時(shí),,此時(shí)無零點(diǎn),即無零點(diǎn),使得又在上單調(diào)遞減為,即在上的唯一零點(diǎn)綜上所述:在區(qū)間存在唯一零點(diǎn)(2)若時(shí),,即恒成立令則,由(1)可知,在上單調(diào)遞增;在上單調(diào)遞減且,,,①當(dāng)時(shí),,即在上恒成立在上單調(diào)遞增,即,此時(shí)恒成立②當(dāng)時(shí),,,,使得在上單調(diào)遞增,在上單調(diào)遞減又,在上恒成立,即恒成立③當(dāng)時(shí),,,使得在上單調(diào)遞減,在上單調(diào)遞增時(shí),,可知不恒成立④當(dāng)時(shí),在上單調(diào)遞減可知不恒成立綜上所述:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)討論函數(shù)零點(diǎn)個(gè)數(shù)、根據(jù)恒成立的不等式求解參數(shù)范圍的問題.對于此類端點(diǎn)值恰為恒成立不等式取等的值的問題,通常采用構(gòu)造函數(shù)的方式,將問題轉(zhuǎn)變成函數(shù)最值與零之間的比較,進(jìn)而通過導(dǎo)函數(shù)的正負(fù)來確定所構(gòu)造函數(shù)的單調(diào)性,從而得到最值.21.已知點(diǎn)A,B關(guān)于坐標(biāo)原點(diǎn)O對稱,│AB│=4,⊙M過點(diǎn)A,B且與直線x+2=0相切.(1)若A在直線x+y=0上,求⊙M的半徑.(2)是否存在定點(diǎn)P,使得當(dāng)A運(yùn)動(dòng)時(shí),│MA│-│MP│為定值?并說明理由.【答案】(1)或;(2)見解析.【解析】【分析】(1)設(shè),,根據(jù),可知;由圓的性質(zhì)可知圓心必在直線上,可設(shè)圓心;利用圓心到的距離為半徑和構(gòu)造方程,從而解出;(2)當(dāng)直線斜率存在時(shí),設(shè)方程為:,由圓的性質(zhì)可知圓心必在直線上;假設(shè)圓心坐標(biāo),利用圓心到的距離為半徑和構(gòu)造方程,解出坐標(biāo),可知軌跡為拋物線;利用拋物線定義可知為拋物線焦點(diǎn),且定值為;當(dāng)直線斜率不存在時(shí),求解出坐標(biāo),驗(yàn)證此時(shí)依然滿足定值,從而可得到結(jié)論.【詳解】(1)在直線上設(shè),則又,解得:過點(diǎn),圓心必在直線上設(shè),圓的半徑為與相切又,即,解得:或當(dāng)時(shí),;當(dāng)時(shí),的半徑為:或(2)存在定點(diǎn),使得說明如下:,關(guān)于原點(diǎn)對稱且直線必為過原點(diǎn)的直線,且①當(dāng)直線斜率存在時(shí),設(shè)方程為:則的圓心必在直線上設(shè),的半徑為與相切又,整理可得:即點(diǎn)軌跡方程為:,準(zhǔn)線方程為:,焦點(diǎn),即拋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 導(dǎo)游業(yè)務(wù)的課程設(shè)計(jì)
- 物電專業(yè)學(xué)什么課程設(shè)計(jì)
- 幼兒課程設(shè)計(jì)得流程
- 2025云南省安全員B證(項(xiàng)目經(jīng)理)考試題庫
- 稀疏矩陣課課程設(shè)計(jì)
- 電類課程設(shè)計(jì)心得
- 管道輸送工藝課程設(shè)計(jì)
- 2024年道路照明電氣工程安裝合同詳細(xì)描述
- 2024年適用擔(dān)保貸款合同示范文本版B版
- 游戲音效培訓(xùn)課程設(shè)計(jì)
- 2025屆天津市重點(diǎn)中學(xué)數(shù)學(xué)高一上期末復(fù)習(xí)檢測試題含解析
- 在線考試系統(tǒng)開發(fā)合作協(xié)議
- 智慧物流第10套理論題附有答案
- 2024-2030年中國脫毛膏市場消費(fèi)模式預(yù)測與未來銷售規(guī)模調(diào)研報(bào)告
- 低壓配電系統(tǒng)運(yùn)行維護(hù)操作手冊
- 教材解讀-2023-2024學(xué)年統(tǒng)編版語文四年級下冊
- 湖北省十堰市2023-2024學(xué)年高三上學(xué)期元月調(diào)考考試歷史試卷
- 《花木蘭》兒童故事繪本課件(圖文演講)
- DB12T 1341-2024 消防產(chǎn)品使用和維護(hù)管理規(guī)范
- AQ/T 1119-2023 煤礦井下人員定位系統(tǒng)通 用技術(shù)條件(正式版)
- 幼兒園班級幼兒圖書目錄清單(大中小班)
評論
0/150
提交評論