蘇州市高新區(qū)2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
蘇州市高新區(qū)2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
蘇州市高新區(qū)2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
蘇州市高新區(qū)2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
蘇州市高新區(qū)2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

蘇州市高新區(qū)2024年畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④2.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm3.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.4.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設動車速度為每小時x千米,則可列方程為()A. B.C. D.5.下列圖形中,主視圖為①的是()A. B. C. D.6.撫順市中小學機器人科技大賽中,有7名學生參加決賽,他們決賽的成績各不相同,其中一名參賽選手想知道自己能否進入前4名,他除了知道自己成績外還要知道這7名學生成績的()A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差7.如圖,是直角三角形,,,點在反比例函數(shù)的圖象上.若點在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-48.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.9.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣610.計算:得()A.- B.- C.- D.二、填空題(本大題共6個小題,每小題3分,共18分)11.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.12.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.13.8的算術平方根是_____.14.分解因式:x2﹣1=____.15.關于x的不等式組的整數(shù)解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤416.當a,b互為相反數(shù),則代數(shù)式a2+ab﹣2的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.18.(8分)為響應學校全面推進書香校園建設的號召,班長李青隨機調(diào)查了若干同學一周課外閱讀的時間(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(:,:,:,:),根據(jù)圖中信息,解答下列問題:(1)這項工作中被調(diào)查的總?cè)藬?shù)是多少?(2)補全條形統(tǒng)計圖,并求出表示組的扇形統(tǒng)計圖的圓心角的度數(shù);(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或畫樹狀圖的方法求出選中甲的概率.19.(8分)如圖,在等邊△ABC中,點D是AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.20.(8分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.21.(8分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO22.(10分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.23.(12分)某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象回答下列問題:出租車的起步價是多少元?當x>3時,求y關于x的函數(shù)關系式;若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.24.如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F(xiàn)同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設E點移動距離為x(0<x<6).(1)∠DCB=度,當點G在四邊形ABCD的邊上時,x=;(2)在點E,F(xiàn)的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關系式,當x取何值時,y有最大值?并求出y的最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】設(1)如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點的橫坐標,故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當x=m、n、s時,對應的y值相等,因此m、n、s中至少有兩個數(shù)是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點,所以此時一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負無法確定,此時的圖象與x軸的交點情況無法確定,所以④中結(jié)論不一定成立.綜上所述,四種說法中正確的是③.故選A.2、B【解析】

首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,

∵大圓的一條弦AB與小圓相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的長==4π,

故選B.【點睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關鍵.3、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B4、D【解析】解:設動車速度為每小時x千米,則可列方程為:﹣=.故選D.5、B【解析】分析:主視圖是從物體的正面看得到的圖形,分別寫出每個選項中的主視圖,即可得到答案.詳解:A、主視圖是等腰梯形,故此選項錯誤;B、主視圖是長方形,故此選項正確;C、主視圖是等腰梯形,故此選項錯誤;D、主視圖是三角形,故此選項錯誤;故選B.點睛:此題主要考查了簡單幾何體的主視圖,關鍵是掌握主視圖所看的位置.6、A【解析】

7人成績的中位數(shù)是第4名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有7個人,且他們的分數(shù)互不相同,第4的成績是中位數(shù),要判斷是否進入前4名,故應知道中位數(shù)的多少,故選A.【點睛】本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義,熟練掌握相關的定義是解題的關鍵.7、D【解析】

要求函數(shù)的解析式只要求出點的坐標就可以,過點、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過點、作軸,軸,分別于、,設點的坐標是,則,,,,,,,,,,,,因為點在反比例函數(shù)的圖象上,則,點在反比例函數(shù)的圖象上,點的坐標是,.故選:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,相似三角形的判定與性質(zhì),求函數(shù)的解析式的問題,一般要轉(zhuǎn)化為求點的坐標的問題,求出圖象上點的橫縱坐標的積就可以求出反比例函數(shù)的解析式.8、C【解析】

設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.9、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.10、B【解析】

同級運算從左向右依次計算,計算過程中注意正負符號的變化.【詳解】-故選B.【點睛】本題考查的是有理數(shù)的混合運算,熟練掌握運算法則是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。12、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.13、2.【解析】試題分析:本題主要考查的是算術平方根的定義,掌握算術平方根的定義是解題的關鍵.依據(jù)算術平方根的定義回答即可.由算術平方根的定義可知:8的算術平方根是,∵=2,∴8的算術平方根是2.故答案為2.考點:算術平方根.14、(x+1)(x﹣1).【解析】試題解析:x2﹣1=(x+1)(x﹣1).考點:因式分解﹣運用公式法.15、C【解析】分析:先根據(jù)一元一次不等式組解出x的取值,再根據(jù)不等式組的整數(shù)解有4個,求出實數(shù)a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數(shù)解,∴整數(shù)解為:故選C.點睛:考查解一元一次不等式組的整數(shù)解,分別解不等式,寫出不等式的解題,根據(jù)不等式整數(shù)解的個數(shù),確定a的取值范圍.16、﹣1.【解析】分析:由已知易得:a+b=0,再把代數(shù)式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數(shù),∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點睛:知道“互為相反數(shù)的兩數(shù)的和為0”及“能夠把a1+ab-1化為為a(a+b)-1”是正確解答本題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)證明見解析【解析】(1)根據(jù)平行線性質(zhì)求出∠B=∠C,等量相減求出BE=CF,根據(jù)SAS推出兩三角形全等即可;(2)借助(1)中結(jié)論△ABE≌△DCF,可證出AE平行且等于DF,即可證出結(jié)論.證明:(1)如圖,∵AB∥CD,∴∠B=∠C.∵BF=CE∴BE=CF∵在△ABE與△DCF中,,∴△ABE≌△DCF(SAS);(2)如圖,連接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E為頂點的四邊形是平行四邊形.18、(1)50人;(2)補全圖形見解析,表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為108°;(3).【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出樣本容量;(2)、根據(jù)總?cè)藬?shù)求出C組的人數(shù),根據(jù)A組的人數(shù)占總?cè)藬?shù)的百分比得出扇形的圓心角度數(shù);(3)、根據(jù)題意列出樹狀圖,從而得出概率.詳解:(1)被調(diào)查的總?cè)藬?shù)為19÷38%=50人;(2)C組的人數(shù)為50﹣(15+19+4)=12(人),補全圖形如下:表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為360°×=108°;(3)畫樹狀圖如下,共有12個可能的結(jié)果,恰好選中甲的結(jié)果有6個,∴P(恰好選中甲)=.點睛:本題主要考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖以及概率的計算法則,屬于基礎題型.理解頻數(shù)、頻率與樣本容量之間的關系是解題的關鍵.19、見解析【解析】試題分析:根據(jù)等邊三角形的性質(zhì)得出AC=BC,∠B=∠ACB=60°,根據(jù)旋轉(zhuǎn)的性質(zhì)得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根據(jù)SAS推出△BCD≌△ACE,根據(jù)全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根據(jù)平行線的判定得出即可.試題解析:∵△ABC是等邊三角形,∴AC=BC,∠B=∠ACB=60°,∵線段CD繞點C順時針旋轉(zhuǎn)60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD與△ACE中,,

∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.20、576名【解析】試題分析:根據(jù)統(tǒng)計圖可以求得本次調(diào)查的人數(shù)和體重落在B組的人數(shù),從而可以將條形統(tǒng)計圖補充完整,進而可以求得我校初三年級體重介于47kg至53kg的學生大約有多少名.試題解析:本次調(diào)查的學生有:32÷16%=200(名),體重在B組的學生有:200﹣16﹣48﹣40﹣32=64(名),補全的條形統(tǒng)計圖如右圖所示,我校初三年級體重介于47kg至53kg的學生大約有:1800×=576(名),答:我校初三年級體重介于47kg至53kg的學生大約有576名.21、3【解析】試題分析:本題考查了相似三角形的判定與性質(zhì),解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO22、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.23、(1)y=2x+2(2)這位乘客乘車的里程是15km【解析】

(1)根據(jù)函數(shù)圖象可以得出出租車的起步價是8元,設當x>3時,y與x的函數(shù)關系式為y=kx+b(k≠0),運用待定系數(shù)法就可以求出結(jié)論;

(2)將y=32代入(1)的解析式就可以求出x的值.【詳解】(1)由圖象得:出租車的起步價是8元;設當x>3時,y與x的函數(shù)關系式為y=kx+b(k≠0),由函數(shù)圖象,得,解得:故y與x的函數(shù)關系式為:y=2x+2;(2)∵32元>8元,∴當y=32時,32=2x+2,x=15答:這位乘客乘車的里程是15km.24、(1)30;2;(2)x=1;(3)當x=時,y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論