2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型3 與折疊有關(guān)的探究題(專題訓(xùn)練)(教師版)_第1頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型3 與折疊有關(guān)的探究題(專題訓(xùn)練)(教師版)_第2頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型3 與折疊有關(guān)的探究題(專題訓(xùn)練)(教師版)_第3頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型3 與折疊有關(guān)的探究題(專題訓(xùn)練)(教師版)_第4頁
2024年中考數(shù)學(xué)二輪題型突破練習(xí)題型11 綜合探究題 類型3 與折疊有關(guān)的探究題(專題訓(xùn)練)(教師版)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

PAGE類型三與折疊有關(guān)的探究題(專題訓(xùn)練)1.(2023·山東棗莊·統(tǒng)考中考真題)問題情境:如圖1,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0邊上的中線.如圖2,將SKIPIF1<0的兩個頂點B,C分別沿SKIPIF1<0折疊后均與點D重合,折痕分別交SKIPIF1<0于點E,G,F(xiàn),H.

猜想證明:(1)如圖2,試判斷四邊形SKIPIF1<0的形狀,并說明理由.問題解決;(2)如圖3,將圖2中左側(cè)折疊的三角形展開后,重新沿SKIPIF1<0折疊,使得頂點B與點H重合,折痕分別交SKIPIF1<0于點M,N,SKIPIF1<0的對應(yīng)線段交SKIPIF1<0于點K,求四邊形SKIPIF1<0的面積.【答案】(1)四邊形SKIPIF1<0是菱形,理由見解析(2)30【分析】(1)利用等腰三角形的性質(zhì)和折疊的性質(zhì),得到SKIPIF1<0,即可得出結(jié)論.(2)先證明四邊形SKIPIF1<0為平行四邊形,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,等積法得到SKIPIF1<0的積,推出四邊形SKIPIF1<0的面積SKIPIF1<0,即可得解.【詳解】(1)解:四邊形SKIPIF1<0是菱形,理由如下:∵在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0邊上的中線,∴SKIPIF1<0,∵將SKIPIF1<0的兩個頂點B,C分別沿SKIPIF1<0折疊后均與點D重合,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,同法可得:SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是菱形;(2)解:∵折疊,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∵SKIPIF1<0,由(1)知:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,

∵SKIPIF1<0,∴SKIPIF1<0,∵四邊形SKIPIF1<0的面積SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0的面積SKIPIF1<0.【點睛】本題考查等腰三角形的性質(zhì),折疊的性質(zhì),平行線分線段對應(yīng)成比例,菱形的判定,平行四邊形的判定和性質(zhì).熟練掌握相關(guān)知識點,并靈活運用,是解題的關(guān)鍵.2.在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個數(shù)學(xué)活動,若身旁沒有量角器或三角尺,又需要作SKIPIF1<0等大小的角,可以采用如下方法:操作感知:第一步:對折矩形紙片SKIPIF1<0,使SKIPIF1<0與SKIPIF1<0重合,得到折痕SKIPIF1<0,把紙片展開(如圖13-1).第二步:再一次折疊紙片,使點SKIPIF1<0落在SKIPIF1<0上,并使折痕經(jīng)過點SKIPIF1<0,得到折痕SKIPIF1<0,同時得到線段SKIPIF1<0(如圖13-2).猜想論證:(1)若延長SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,如圖13-3所示,試判定SKIPIF1<0的形狀,并證明你的結(jié)論.拓展探究:(2)在圖13-3中,若SKIPIF1<0,當(dāng)SKIPIF1<0滿足什么關(guān)系時,才能在矩形紙片SKIPIF1<0中剪出符(1)中的等邊三角形SKIPIF1<0?【答案】(1)SKIPIF1<0是等邊三角形,理由見解析;(2)SKIPIF1<0,理由見解析【分析】(1)連接SKIPIF1<0,由折疊性質(zhì)可得SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0,然后可得到SKIPIF1<0,即可判定SKIPIF1<0是等邊三角形.(2)由折疊可知SKIPIF1<0,由(1)可知SKIPIF1<0,利用SKIPIF1<0的三角函數(shù)即可求得.【詳解】(1)解:SKIPIF1<0是等邊三角形,證明如下:連接SKIPIF1<0.由折疊可知:SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等邊三角形.(2)解:方法一:要在矩形紙片SKIPIF1<0上剪出等邊SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0或(SKIPIF1<0)時,在矩形紙片上能剪出這樣的等邊SKIPIF1<0.方法二:要在矩形紙片SKIPIF1<0上剪出等邊SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0(或SKIPIF1<0)時,在矩形紙片上能剪出這樣的等邊SKIPIF1<0.【點睛】本題考查了折疊的性質(zhì),及銳角三角函數(shù)的應(yīng)用,正確理解折疊性質(zhì)靈活運用三角函數(shù)解直角三角形是解本題的關(guān)鍵.3.(2023·遼寧大連·統(tǒng)考中考真題)綜合與實踐問題情境:數(shù)學(xué)活動課上,王老師給同學(xué)們每人發(fā)了一張等腰三角形紙片探究折疊的性質(zhì).已知SKIPIF1<0,點SKIPIF1<0為SKIPIF1<0上一動點,將SKIPIF1<0以SKIPIF1<0為對稱軸翻折.同學(xué)們經(jīng)過思考后進行如下探究:獨立思考:小明:“當(dāng)點SKIPIF1<0落在SKIPIF1<0上時,SKIPIF1<0.”小紅:“若點SKIPIF1<0為SKIPIF1<0中點,給出SKIPIF1<0與SKIPIF1<0的長,就可求出SKIPIF1<0的長.”實踐探究:奮進小組的同學(xué)們經(jīng)過探究后提出問題1,請你回答:

問題1:在等腰SKIPIF1<0中,SKIPIF1<0由SKIPIF1<0翻折得到.(1)如圖1,當(dāng)點SKIPIF1<0落在SKIPIF1<0上時,求證:SKIPIF1<0;(2)如圖2,若點SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0,求SKIPIF1<0的長.問題解決:小明經(jīng)過探究發(fā)現(xiàn):若將問題1中的等腰三角形換成SKIPIF1<0的等腰三角形,可以將問題進一步拓展.問題2:如圖3,在等腰SKIPIF1<0中,SKIPIF1<0.若SKIPIF1<0,則求SKIPIF1<0的長.【答案】(1)見解析;(2)SKIPIF1<0;問題2:SKIPIF1<0【分析】(1)根據(jù)等邊對等角可得SKIPIF1<0,根據(jù)折疊以及三角形內(nèi)角和定理,可得SKIPIF1<0SKIPIF1<0,根據(jù)鄰補角互補可得SKIPIF1<0,即可得證;(2)連接SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的中位線,勾股定理求得SKIPIF1<0,根據(jù)SKIPIF1<0即可求解;問題2:連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,根據(jù)已知條件可得SKIPIF1<0,則四邊形SKIPIF1<0是矩形,勾股定理求得SKIPIF1<0,根據(jù)三線合一得出SKIPIF1<0,根據(jù)勾股定理求得SKIPIF1<0的長,即可求解.【詳解】(1)∵等腰SKIPIF1<0中,SKIPIF1<0由SKIPIF1<0翻折得到∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;(2)如圖所示,連接SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,

∵折疊,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的中點,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0;問題2:如圖所示,連接SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,

∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0.【點睛】本題考查了等腰三角形的性質(zhì),折疊的性質(zhì),勾股定理,矩形的性質(zhì)與判定,熟練掌握以上知識是解題的關(guān)鍵.4.(2021·山西中考真題)綜合與實踐,問題情境:數(shù)學(xué)活動課上,老師出示了一個問題:如圖①,在SKIPIF1<0中,SKIPIF1<0,垂足為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點,連接SKIPIF1<0,SKIPIF1<0,試猜想SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系,并加以證明;獨立思考:(1)請解答老師提出的問題;實踐探究:(2)希望小組受此問題的啟發(fā),將SKIPIF1<0沿著SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的中點)所在直線折疊,如圖②,點SKIPIF1<0的對應(yīng)點為SKIPIF1<0,連接SKIPIF1<0并延長交SKIPIF1<0于點SKIPIF1<0,請判斷SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系,并加以證明;問題解決:(3)智慧小組突發(fā)奇想,將SKIPIF1<0沿過點SKIPIF1<0的直線折疊,如圖③,點A的對應(yīng)點為SKIPIF1<0,使SKIPIF1<0于點SKIPIF1<0,折痕交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0.該小組提出一個問題:若此SKIPIF1<0的面積為20,邊長SKIPIF1<0,SKIPIF1<0,求圖中陰影部分(四邊形SKIPIF1<0)的面積.請你思考此問題,直接寫出結(jié)果.【答案】(1)SKIPIF1<0;見解析;(2)SKIPIF1<0,見解析;(3)SKIPIF1<0.【分析】(1)如圖,分別延長SKIPIF1<0,SKIPIF1<0相交于點P,根據(jù)平行四邊形的性質(zhì)可得SKIPIF1<0,根據(jù)平行線的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,利用AAS可證明△PDF≌△BCF,根據(jù)全等三角形的性質(zhì)可得SKIPIF1<0,根據(jù)直角三角形斜邊中線的性質(zhì)可得SKIPIF1<0,即可得SKIPIF1<0;(2)根據(jù)折疊性質(zhì)可得∠CFB=∠C′FB=SKIPIF1<0∠CFC′,F(xiàn)C=FC′,可得FD=FC′,根據(jù)等腰三角形的性質(zhì)可得∠FDC′=∠FC′D,根據(jù)三角形外角性質(zhì)可得∠CFC′=∠FDC′+∠FC′D,即可得出∠C′FB=∠FC′D,可得DG//FB,即可證明四邊形DGBF是平行四邊形,可得DF=BG=SKIPIF1<0,可得AG=BG;(3)如圖,過點M作MQ⊥A′B于Q,根據(jù)平行四邊形的面積可求出BH的長,根據(jù)折疊的性質(zhì)可得A′B=AB,∠A=∠A′,∠ABM=∠MBH,根據(jù)SKIPIF1<0可得A′B⊥AB,即可證明△MBQ是等腰直角三角形,可得MQ=BQ,根據(jù)平行四邊形的性質(zhì)可得∠A=∠C,即可得∠A′=∠C,進而可證明△A′NH∽△CBH,根據(jù)相似三角形的性質(zhì)可得A′H、NH的長,根據(jù)NH//MQ可得△A′NH∽△A′MQ,根據(jù)相似三角形的性質(zhì)可求出MQ的長,根據(jù)S陰=S△A′MB-S△A′NH即可得答案.【詳解】(1)SKIPIF1<0.如圖,分別延長SKIPIF1<0,SKIPIF1<0相交于點P,∵四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0的中點,∴SKIPIF1<0,在△PDF和△BCF中,SKIPIF1<0,∴△PDF≌△BCF,∴SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0的中點,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)SKIPIF1<0.∵將SKIPIF1<0沿著SKIPIF1<0所在直線折疊,點SKIPIF1<0的對應(yīng)點為SKIPIF1<0,∴∠CFB=∠C′FB=SKIPIF1<0∠CFC′,SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0的中點,∴SKIPIF1<0,∴SKIPIF1<0,∴∠FDC′=∠FC′D,∵SKIPIF1<0=∠FDC′+∠FC′D,∴SKIPIF1<0,∴∠FC′D=∠C′FB,∴SKIPIF1<0,∵四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,DC=AB,∴四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)如圖,過點M作MQ⊥A′B于Q,∵SKIPIF1<0的面積為20,邊長SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,∴BH=50÷5=4,∴CH=SKIPIF1<0,A′H=A′B-BH=1,∵將SKIPIF1<0沿過點SKIPIF1<0的直線折疊,點A的對應(yīng)點為SKIPIF1<0,∴A′B=AB,∠A=∠A′,∠ABM=∠MBH,∵SKIPIF1<0于點SKIPIF1<0,AB//CD,∴SKIPIF1<0,∴∠MBH=45°,∴△MBQ是等腰直角三角形,∴MQ=BQ,∵四邊形ABCD是平行四邊形,∴∠A=∠C,∴∠A′=∠C,∵∠A′HN=∠CHB,∴△A′NH∽△CBH,∴SKIPIF1<0,即SKIPIF1<0,解得:NH=2,∵SKIPIF1<0,MQ⊥A′B,∴NH//MQ,∴△A′NH∽△A′MQ,∴SKIPIF1<0,即SKIPIF1<0,解得:MQ=SKIPIF1<0,∴S陰=S△A′MB-S△A′NH=SKIPIF1<0A′B·MQ-SKIPIF1<0A′H·NH=SKIPIF1<0×5×SKIPIF1<0-SKIPIF1<0×1×2=SKIPIF1<0.【點睛】本題考查折疊的性質(zhì)、平行四邊形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.5.(2023·廣西·統(tǒng)考中考真題)【探究與證明】折紙,操作簡單,富有數(shù)學(xué)趣味,我們可以通過折紙開展數(shù)學(xué)探究,探索數(shù)學(xué)奧秘.【動手操作】如圖1,將矩形紙片SKIPIF1<0對折,使SKIPIF1<0與SKIPIF1<0重合,展平紙片,得到折痕SKIPIF1<0;折疊紙片,使點B落在SKIPIF1<0上,并使折痕經(jīng)過點A,得到折痕SKIPIF1<0,點B,E的對應(yīng)點分別為SKIPIF1<0,SKIPIF1<0,展平紙片,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.

請完成:(1)觀察圖1中SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,試猜想這三個角的大小關(guān)系;(2)證明(1)中的猜想;【類比操作】如圖2,N為矩形紙片SKIPIF1<0的邊SKIPIF1<0上的一點,連接SKIPIF1<0,在SKIPIF1<0上取一點P,折疊紙片,使B,P兩點重合,展平紙片,得到折痕SKIPIF1<0;折疊紙片,使點B,P分別落在SKIPIF1<0,SKIPIF1<0上,得到折痕l,點B,P的對應(yīng)點分別為SKIPIF1<0,SKIPIF1<0,展平紙片,連接,SKIPIF1<0.

請完成:(3)證明SKIPIF1<0是SKIPIF1<0的一條三等分線.【答案】(1)SKIPIF1<0(2)見詳解(3)見詳解【分析】(1)根據(jù)題意可進行求解;(2)由折疊的性質(zhì)可知SKIPIF1<0,SKIPIF1<0,然后可得SKIPIF1<0,則有SKIPIF1<0是等邊三角形,進而問題可求證;(3)連接SKIPIF1<0,根據(jù)等腰三角形性質(zhì)證明SKIPIF1<0,根據(jù)平行線的性質(zhì)證明SKIPIF1<0,證明SKIPIF1<0,得出SKIPIF1<0,即可證明SKIPIF1<0.【詳解】(1)解:由題意可知SKIPIF1<0;(2)證明:由折疊的性質(zhì)可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)證明:連接SKIPIF1<0,如圖所示:由折疊的性質(zhì)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵折痕SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵四邊形SKIPIF1<0為矩形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的一條三等分線.【點睛】本題主要考查折疊的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)與判定及矩形的性質(zhì),三角形全等的判定和性質(zhì),作出輔助線,熟練掌握折疊的性質(zhì),證明,SKIPIF1<0是解題的關(guān)鍵.6.(2022·重慶市A卷)如圖,在銳角△ABC中,∠A=60°,點D,E分別是邊AB,AC上一動點,連接BE交直線CD于點F.

(1)如圖1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度數(shù);

(2)如圖2,若AB=AC,且BD=AE,在平面內(nèi)將線段AC繞點C順時針方向旋轉(zhuǎn)60°得到線段CM,連接MF,點N是MF的中點,連接CN.在點D,E運動過程中,猜想線段BF,CF,CN之間存在的數(shù)量關(guān)系,并證明你的猜想;

(3)若AB=AC,且BD=AE,將△ABC沿直線AB翻折至△ABC所在平面內(nèi)得到△ABP,點H是AP的中點,點K是線段PF上一點,將△PHK沿直線HK翻折至△PHK所在平面內(nèi)得到△QHK,連接PQ.在點D,E運動過程中,當(dāng)線段PF取得最小值,且QK⊥PF時,請直接寫出PQBC的值.

【答案】解:(1)如圖1中,在射線CD上取一點K,使得CK=BE,

在△BCE和△CBK中,

BC=CB∠BCK=∠CBEBE=CK,

∴△BCE≌△CBK(SAS),

∴BK=CE,∠BEC=∠BKD,

∵CE=BD,

∴BD=BK,

∴∠BKD=∠BDK=∠ADC=∠CEB,

∵∠BEC+∠AEF=180°,

∴∠ADF+∠AEF=180°,

∴∠A+∠EFD=180°,

∵∠A=60°,

∴∠EFD=120°,

∴∠CFE=180°?120°=60°;

(2)結(jié)論:BF+CF=2CN.

理由:如圖2中,∵AB=AC,∠A=60°,

∴△ABC是等邊三角形,

∴AB=CB,∠A=∠CBD=60°,

∵AE=BD,

∴△ABE≌△BCD(SAS),

∴∠BCF=∠ABE,

∴∠FBC+∠BCF=60°,

∴∠BFC=120°,

如圖2?1中,延長CN到Q,使得NQ=CN,連接FQ,

∵NM=NF,∠CNM=∠FNQ,CN=NQ,

∴△CNM≌△QNF(SAS),

∴FQ=CM=BC,

延長CF到P,使得PF=BF,則△PBF是等邊三角形,

∴∠PBC+∠PCB=∠PCB+∠FCM=120°,

∴∠PFQ=∠FCM=∠PBC,

∵PB=PF,

∴△PFQ≌△PBC(SAS),

∴PQ=PC,∠CPB=∠QPF=60°,

∴△PCQ是等邊三角形,

∴BF+CF=PC=QC=2CN.

(3)由(2)可知∠BFC=120°,

∴點F的運動軌跡為紅色圓弧(如圖3?1中),

∴P,F(xiàn),O三點共線時,PF的值最小,

此時tan∠APK=AOAP=23,

∴∠HPK>45°,

∵QK⊥PF,

∴∠PKH=∠QKH=45°,

如圖3?2中,過點H作HL⊥PK于點L,設(shè)PQ交KH題意點J,設(shè)HL=LK=2,PL=3,PH=7,KH=22,

7.(2022·廣東省深圳市)(1)發(fā)現(xiàn):如圖①所示,在正方形ABCD中,E為AD邊上一點,將△AEB沿BE翻折到△BEF處,延長EF交CD邊于G點.求證:△BFG≌△BCG;

(2)探究:如圖②,在矩形ABCD中,E為AD邊上一點,且AD=8,AB=6.將△AEB沿BE翻折到△BEF處,延長EF交BC邊于G點,延長BF交CD邊于點H,且FH=CH,求AE的長.

(3)拓展:如圖③,在菱形ABCD中,AB=6,E為CD邊上的三等分點,∠D=60°.將△ADE沿AE翻折得到△AFE,直線EF交BC于點P,求PC的長.

【答案】(1)證明:∵將△AEB沿BE翻折到△BEF處,四邊形ABCD是正方形,

∴AB=BF,∠BFE=∠A=90°,

∴∠BFG=90°=∠C,

∵AB=BC=BF,BG=BG,

∴Rt△BFG≌Rt△BCG(HL);

(2)解:延長BH,AD交于Q,如圖:

設(shè)FH=HC=x,

在Rt△BCH中,BC2+CH2=BH2,

∴82+x2=(6+x)2,

解得x=73,

∴DH=DC?HC=113,

∵∠BFG=∠BCH=90°,∠HBC=∠FBG,

∴△BFG∽△BCH,

∴BFBC=BGBH=FGHC,即68=BG6+73=FG73,

∴BG=254,F(xiàn)G=74,

∵EQ//GB,DQ//CB,

∴△EFQ∽△GFB,△DHQ∽△CHB,

∴BCDQ=CHDH,即8DQ=736?73,

∴DQ=887,

設(shè)AE=EF=m,則DE=8?m,

∴EQ=DE+DQ=8?m+887=1447?m,

∵△EFQ∽△GFB,

∴EQBG=EFFG,即1447?m254=m74,

解得m=92,

∴AE的長為92;

(3)解:(Ⅰ)當(dāng)DE=13DC=2時,延長FE交AD于Q,過Q作QH⊥CD于H,如圖:

設(shè)DQ=x,QE=y,則AQ=6?x,

∵CP//DQ,

∴△CPE∽△QDE,

∴CPDQ=CEDE=2,

8.(2021·湖北省荊州市)在矩形ABCD中,AB=2,AD=4,F(xiàn)是對角線AC上不與點A,C重合的一點,過F作FE⊥AD于E,將△AEF沿EF翻折得到△GEF,點G在射線AD上,連接CG.

(1)如圖1,若點A的對稱點G落在AD上,∠FGC=90°,延長GF交AB于H,連接CH.

①求證:△CDG∽△GAH;

②求tan∠GHC.

(2)如圖2,若點A的對稱點G落在AD延長線上,∠GCF=90°,判斷△GCF與△AEF是否全等,并說明理由.

【答案】(1)如圖1,

①證明:∵四邊形ABCD是矩形,

∴∠D=∠GAH=90°,

∴∠DCG+∠DGC=90°,

∵∠FGC=90°,

∴∠AGH+∠DGC=90°,

∴∠DCG=∠AGH,

∴△CDG∽△GAH.

②由翻折得∠EGF=∠EAF,

∴∠AGH=∠DAC=∠DCG,

∵CD=AB=2,AD=4,

∴DGCD=AHAG=CDAD=tan∠DAC=24=12,

∴DG=12CD=12×2=1,

∴GA=4?1=3,

∵△CDG∽△GAH,

∴CGGH=CDGA,

∴tan∠GHC=CGGH=CDGA=23.

(2)不全等,理由如下:

∵AD=49.(2022·四川省成都市)在矩形ABCD的CD邊上取一點E,將△BCE沿BE翻折,使點C恰好落在AD邊上點F處.

(1)如圖1,若BC=2BA,求∠CBE的度數(shù);

(2)如圖2,當(dāng)AB=5,且AF?FD=10時,求BC的長;

(3)如圖3,延長EF,與∠ABF的角平分線交于點M,BM交AD于點N,當(dāng)NF=AN+FD時,求ABBC【答案】解:(1)∵將△BCE沿BE翻折,使點C恰好落在AD邊上點F處,

∴BC=BF,∠FBE=∠EBC,

∵BC=2AB,

∴BF=2AB,

∴∠AFB=30°,

∵四邊形ABCD是矩形,

∴AD//BC,

∴∠AFB=∠CBF=30°,

∴∠CBE=12∠FBC=15°;

(2)∵將△BCE沿BE翻折,使點C恰好落在AD邊上點F處,

∴∠BFE=∠C=90°,CE=EF,

又∵矩形ABCD中,∠A=∠D=90°,

∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,

∴∠AFB=∠DEF,

∴△FAB∽△EDF,

∴AFDE=ABDF,

∴AF?DF=AB?DE,

∵AF?DF=10,AB=5,

∴DE=2,

∴CE=DC?DE=5?2=3,

∴EF=3,

∴DF=EF2?DE2=32?22=5,

∴AF=105=25,

∴BC=AD=AF+DF=25+5=35.

(3)過點N作NG⊥BF于點G,

∵NF=AN+FD,

∴NF=12AD=12BC10.在矩形ABCD中,E為DC邊上一點,把△ADE沿AE翻折,使點D恰好落在BC邊上的點F.

(1)求證:△ABF∽△FCE;

(2)若AB=23,AD=4,求EC的長;

(3)若AE?DE=2EC,記∠BAF=α,∠FAE=β,求tanα+tanβ的值.【答案】(1)證明:∵四邊形ABCD是矩形,

∴∠B=∠C=∠D=90°,

由翻折可知,∠D=∠AFE=90°,

∴∠AFB+∠EFC=90°,∠EFC+∠CEF=90°,

∴∠AFB=∠FEC,

∴△ABF∽△FCE.

(2)設(shè)EC=x,

由翻折可知,AD=AF=4,

∴BF=AF2?AB2=16?12=2,

∴CF=BC?BF=2,

∵△ABF∽△FCE,

∴ABCF=BFEC,

∴232=2x,

∴x=233,

∴EC=233.

(3)∵△ABF∽△FCE,

∴AFEF=ABCF,

∴tanα+tanβ=BFAB+EFAF=BFAB+CFAB=BF+CFAB=11.已知:在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0邊上的一個動點,將矩形SKIPIF1<0折疊,使點SKIPIF1<0與點SKIPIF1<0重合,點SKIPIF1<0落在點SKIPIF1<0處,折痕為SKIPIF1<0.(1)如圖1,當(dāng)點SKIPIF1<0與點SKIPIF1<0重合時,則線段SKIPIF1<0_______________,SKIPIF1<0_____________;(2)如圖2,當(dāng)點SKIPIF1<0與點SKIPIF1<0,SKIPIF1<0均不重合時,取SKIPIF1<0的中點SKIPIF1<0,連接并延長SKIPIF1<0與SKIPIF1<0的延長線交于點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.①求證:四邊形SKIPIF1<0是平行四邊形:②當(dāng)SKIPIF1<0時,求四邊形SKIPIF1<0的面積.【答案】(1)2,4;(2)①見解析;②SKIPIF1<0【分析】(1)過點F作FH⊥AB,由翻折的性質(zhì)可知:AE=CE,∠FEA=∠FEC,∠G=∠A=90°根據(jù)平行線的性質(zhì)和等量代換可得∠CFE=∠FEC,由等角對等邊可得:CF=CE,設(shè)AE=CE=x,BE=6﹣x,在Rt△BCE中,由勾股定理可得關(guān)于x的方程,解方程求得x的值,進而可得BE、DF的長,由矩形的判定可得四邊形DAHF是矩形,進而可求FH、EH的長,最后由勾股定理可得EF的長;(2)①根據(jù)折疊的性質(zhì)可得SKIPIF1<0,進而可得SKIPIF1<0,根據(jù)已知條件可得SKIPIF1<0,從而易證SKIPIF1<0,進而根據(jù)全等三角形的性質(zhì)和平行四邊形的判定即可求證結(jié)論;②連接SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,又由①知:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,繼而易證∠MAD=PAB,接根據(jù)三角函數(shù)求得PB,設(shè)SKIPIF1<0,則SKIPIF1<0,根據(jù)勾股定理可得關(guān)于x的方程,解方程可得PE的長,繼而代入數(shù)據(jù)即可求解.【詳解】解:(1)SKIPIF1<02,SKIPIF1<04;過點F作FH⊥AB,∵折疊后點A、P、C重合∴AE=CE,∠FEA=∠FEC,∵CD∥AB∴∠CFE=∠FEA,∴∠CFE=∠FEC,∴CF=CE=AE,設(shè)AE=CE=CF=x,BE=AB﹣AE=6﹣x,在Rt△BCE中,由勾股定理可得SKIPIF1<0,即SKIPIF1<0解得:x=4,即AE=CE=CF=4∴BE=2、DF=2,∵∠D=∠A=∠FHA=90°∴四邊形DAHF是矩形,∴FH=SKIPIF1<0、EH=AB﹣BE﹣AH=6﹣2﹣2=2在Rt△EFH中,由勾股定理可得:SKIPIF1<0=4(2)①證明:如圖2,∵在矩形SKIPIF1<0中,SKIPIF1<0,由折疊(軸對稱)性質(zhì),得:SKIPIF1<0,∴SKIPIF1<0,∵點SKIPIF1<0是SKIPIF1<0的中點,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形:②如圖2,連接SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,又由①知:SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,又在SKIPIF1<0中,若設(shè)SKIPIF1<0,則SKIPIF1<0,由勾股定理得:SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0且SKIPIF1<0,又四邊形SKIPIF1<0是平行四邊形,∴四邊形SKIPIF1<0的面積為SKIPIF1<0.【點睛】本題主要考查矩形與翻折的問題,涉及到勾股定理、全等三角形的判定和性質(zhì)、平行四邊形的判定及其性質(zhì)、翻折的性質(zhì)、正切的有關(guān)知識,解題的關(guān)鍵是熟練掌握所學(xué)知識并且學(xué)會作輔助線.12.(2021·湖南中考真題)如圖,在SKIPIF1<0中,點SKIPIF1<0為斜邊SKIPIF1<0上一動點,將SKIPIF1<0沿直線SKIPIF1<0折疊,使得點SKIPIF1<0的對應(yīng)點為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)如圖①,若SKIPIF1<0,證明:SKIPIF1<0.(2)如圖②,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值.(3)如圖③,若SKIPIF1<0,是否存在點SKIPIF1<0,使得SKIPIF1<0.若存在,求此時SKIPIF1<0的值;若不存在,請說明理由.【答案】(1)證明見解析;(2)SKIPIF1<0;(3)存在,SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0.【分析】(1)先根據(jù)平行線的判定與性質(zhì)可得SKIPIF1<0,再根據(jù)折疊的性質(zhì)可得SKIPIF1<0,從而可得SKIPIF1<0,然后根據(jù)平行線的判定可得SKIPIF1<0,最后根據(jù)菱形的判定與性質(zhì)即可得證;(2)設(shè)SKIPIF1<0與SKIPIF1<0的交點為點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,設(shè)SKIPIF1<0,從而可得SKIPIF1<0,先證出SKIPIF1<0,從而可得SKIPIF1<0,設(shè)SKIPIF1<0,根據(jù)線段的和差可得SKIPIF1<0,代入可求出SKIPIF1<0,從而可得SKIPIF1<0,再在SKIPIF1<0中,解直角三角形可得SKIPIF1<0,由此可得SKIPIF1<0,然后在SKIPIF1<0中,根據(jù)余弦三角函數(shù)的定義即可得;(3)如圖(見解析),設(shè)SKIPIF1<0,從而可得SKIPIF1<0,分①點SKIPIF1<0在直線SKIPIF1<0的左側(cè);②點SKIPIF1<0在直線SKIPIF1<0的右側(cè)兩種情況,再分別利用等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)求解即可得.【詳解】(1)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由折疊的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,又SKIPIF1<0,SKIPIF1<0平行四邊形SKIPIF1<0是菱形,SKIPIF1<0;(2)如圖,設(shè)SKIPIF1<0與SKIPIF1<0的交點為點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,

SKIPIF1<0,SKIPIF1<0是等腰三角形,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由折疊的性質(zhì)得:SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由折疊的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,由題意,分以下兩種情況:①如圖,當(dāng)點SKIPIF1<0在直線SKIPIF1<0的左側(cè)時,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,

SKIPIF1<0(等腰三角形的三線合一),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0;②如圖,當(dāng)點SKIPIF1<0在直線SKIPIF1<0的右側(cè)時,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,

同理可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0在SKIPIF1<0上,由折疊的性質(zhì)得:SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上,存在點SKIPIF1<0,使得SKIPIF1<0,此時SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0.【點睛】本題考查了菱形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、解直角三角形、折疊的性質(zhì)、等邊三角形的判定與性質(zhì)等知識點,較難的是題(3),正確分兩種情況討論是解題關(guān)鍵.13.(2021·浙江中考真題)(推理)如圖1,在正方形ABCD中,點E是CD上一動點,將正方形沿著BE折疊,點C落在點F處,連結(jié)BE,CF,延長CF交AD于點G.(1)求證:SKIPIF1<0.(運用)(2)如圖2,在(推理)條件下,延長BF交AD于點H.若SKIPIF1<0,SKIPIF1<0,求線段DE的長.(拓展)(3)將正方形改成矩形,同樣沿著BE折疊,連結(jié)CF,延長CF,BF交直線AD于G,兩點,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值(用含k的代數(shù)式表示).

【答案】(1)見解析;(2)SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)ASA證明SKIPIF1<0;(2)由(1)得SKIPIF1<0,由折疊得SKIPIF1<0,進一步證明SKIPIF1<0,由勾股定理得SKIPIF1<0,代入相關(guān)數(shù)據(jù)求解即可;(3)如圖,連結(jié)HE,分點H在D點左邊和點SKIPIF1<0在SKIPIF1<0點右邊兩種情況,利用相似三角形的判定與性質(zhì)得出DE的長,再由勾股定理得SKIPIF1<0,代入相關(guān)數(shù)據(jù)求解即可.【詳解】(1)如圖,SKIPIF1<0由SKIPIF1<0折疊得到,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0四邊形ABCD是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0正方形SKIPIF1<0SKIPIF1<0,SKIPIF1<0.(2)如圖,連接SKIPIF1<0,由(1)得SKIPIF1<0,SKIPIF1<0,由折疊得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0舍去).(3)如圖,連結(jié)HE,由已知SKIPIF1<0可設(shè)SKIPIF1<0,SKIPIF1<0,可令SKIPIF1<0,①當(dāng)點H在D點左邊時,如圖,同(2)可得,SKIPIF1<0,SKIPIF1<0,由折疊得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0舍去).SKIPIF1<0②當(dāng)點SKIPIF1<0在SKIPIF1<0點右邊時,如圖,同理得SKIPIF1<0,SKIPIF1<0,同理可得SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0舍去).SKIPIF1<0【點睛】此題主要考查了正方形的性質(zhì),矩形的性質(zhì),折疊的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,相似三角形的判定與性質(zhì),在應(yīng)用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當(dāng)輔助線構(gòu)造三角形.14.(2021·湖北中考真題)在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是對角線SKIPIF1<0上不與點SKIPIF1<0,SKIPIF1<0重合的一點,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0翻折得到SKIPIF1<0,點SKIPIF1<0在射線SKIPIF1<0上,連接SKIPIF1<0.(1)如圖1,若點SKIPIF1<0的對稱點SKIPIF1<0落在SKIPIF1<0上,SKIPI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論