基于ABC-SMC回歸算法具有觀測(cè)噪聲的AR(p)模型的參數(shù)估計(jì)_第1頁
基于ABC-SMC回歸算法具有觀測(cè)噪聲的AR(p)模型的參數(shù)估計(jì)_第2頁
基于ABC-SMC回歸算法具有觀測(cè)噪聲的AR(p)模型的參數(shù)估計(jì)_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于ABC-SMC回歸算法具有觀測(cè)噪聲的AR(p)模型的參數(shù)估計(jì)Introduction:Autoregressivemodelsarewidelyusedinvariousfieldssuchastimeseriesanalysis,finance,andeconometrics.Theyprovideavaluabletoolformodelingandpredictingtime-dependentdata.Inthispaper,weproposeanextensionoftheApproximateBayesianComputationSequentialMonteCarlo(ABC-SMC)algorithmforparameterestimationinAutoregressivemodelswithobservationnoise,specificallyAR(p)models.Background:Autoregressivemodelsareaclassoftimeseriesmodelsthatusepastobservationstopredictfuturevalues.TheAR(p)modelassumesthatthecurrentobservationisalinearcombinationoftheppreviousobservationsplusanerrorterm.TheequationsforanAR(p)modelcanbewrittenas:Y_t=c+phi_1*Y_{t-1}+phi_2*Y_{t-2}+...+phi_p*Y_{t-p}+epsilon_tWhereY_tisthecurrentobservation,cisaconstantterm,phi_1tophi_paretheautoregressivecoefficients,andepsilon_trepresentstheobservationnoise.Thegoalistoestimatetheunknownparameters(c,phi_1,...,phi_p)basedontheobserveddata.ABC-SMCAlgorithm:ApproximateBayesianComputationSequentialMonteCarlo(ABC-SMC)isasimulation-basedmethodusedforBayesianinferenceincomplexmodels.Itisparticularlyusefulwhenthelikelihoodfunctionisintractableordifficulttocompute.TheABC-SMCalgorithminvolvessimulatingdatafromthemodelwithdifferentparametervaluesandcomparingthesimulateddatatotheobserveddatausingasummarystatistic.AR(p)ModelwithObservationNoise:Inthispaper,weconsiderthecasewheretheAR(p)modelisaffectedbyobservationnoise.WeassumethattheobservationnoisefollowsaGaussiandistributionwithzeromeanandunknownvariancesigma^2.Hence,theequationfortheAR(p)modelwithobservationnoisebecomes:Y_t=c+phi_1*Y_{t-1}+phi_2*Y_{t-2}+...+phi_p*Y_{t-p}+epsilon_tWhereepsilon_t~N(0,sigma^2).ParameterEstimationusingABC-SMC:ThegoalofparameterestimationintheAR(p)modelwithobservationnoiseistofindtheposteriordistributionoftheparametersgiventheobserveddata.However,thelikelihoodfunctionisintractableduetothepresenceofobservationnoise.Therefore,weresorttousingtheABC-SMCalgorithmforapproximateBayesianinference.TheABC-SMCalgorithmproceedsasfollows:1.Initializethepopulationofparticleswithrandomlyselectedparametervaluesfromthepriordistributions.2.Foreachparticle,simulatedatafromtheAR(p)modelwiththegivenparametervalues.3.Computeasummarystatisticofthesimulateddataandtheobserveddata.4.Ifthedifferencebetweenthesummarystatisticsisbelowapredefinedthreshold,accepttheparticle.5.Otherwise,perturbtheparametervaluesoftheparticleandgotostep2.6.Repeatsteps2-5untilasufficientnumberofparticleshavebeenaccepted.7.Updatethethresholdsandrepeatsteps2-6untilconvergenceisreached.Results:WeappliedtheproposedABC-SMCalgorithmtoestimatetheparametersofanAR(p)modelwithobservationnoiseusingsyntheticdata.Theresultsdemonstratetheeffectivenessofthealgorithminaccuratelyestimatingtheparameters.Conclusion:Inthispaper,wehavepresentedanextensionoftheABC-SMCalgorithmforparameterestimationinAR(p)modelswithobservationnoise.Thealgorithmprovidesanefficientandrobustapproachforestimatingtheunknownparameters.Theresultsshowtheaccuracyandeffectivenessofthepropos

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論