內(nèi)蒙古平煤高級中學(xué)2024屆高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁
內(nèi)蒙古平煤高級中學(xué)2024屆高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁
內(nèi)蒙古平煤高級中學(xué)2024屆高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁
內(nèi)蒙古平煤高級中學(xué)2024屆高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁
內(nèi)蒙古平煤高級中學(xué)2024屆高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古平煤高級中學(xué)2024屆高三二診模擬考試數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.4.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.5.設(shè)復(fù)數(shù),則=()A.1 B. C. D.6.設(shè)是等差數(shù)列的前n項和,且,則()A. B. C.1 D.27.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.8.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.9.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.10.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)11.某校團委對“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯誤的概率不超過0.5%的前提下,認為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯誤的概率不超過0.5%的前提下,認為“學(xué)生性別與中學(xué)生追星有關(guān)”12.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知,記,則的展開式中各項系數(shù)和為__________.14.已知拋物線的對稱軸與準線的交點為,直線與交于,兩點,若,則實數(shù)__________.15.已知向量,,則______.16.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.19.(12分)在開展學(xué)習(xí)強國的活動中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計劃從兩個學(xué)習(xí)組中隨機各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.20.(12分)已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設(shè)點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.21.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.22.(10分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)若函數(shù)有兩個極值點,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運算的核心素養(yǎng).2、A【解析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.3、B【解析】

根據(jù)角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.4、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.5、A【解析】

根據(jù)復(fù)數(shù)的除法運算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點睛】本題考查了復(fù)數(shù)的除法運算與化簡求值,屬于基礎(chǔ)題.6、C【解析】

利用等差數(shù)列的性質(zhì)化簡已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.7、D【解析】

根據(jù)拋物線的定義,結(jié)合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設(shè),則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.8、D【解析】

先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.9、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題10、C【解析】

利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.11、B【解析】

通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點睛】本題考查了獨立性檢驗的應(yīng)用問題,屬于基礎(chǔ)題.12、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)定積分的計算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計算,可得,令,則,即的展開式中各項系數(shù)和為.【點睛】本題主要考查了定積分的應(yīng)用,以及二項式定理的應(yīng)用,其中解答中根據(jù)定積分的計算和二項式定理求得的表示是解答本題的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.14、【解析】

由于直線過拋物線的焦點,因此過,分別作的準線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點,,過,分別作的準線的垂線,垂足分別為,,由拋物線的定義知,.因為,所以.因為,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點睛】本題考查拋物線的性質(zhì),考查拋物線的焦點弦問題,掌握拋物線的定義,把拋物線上點到焦點距離與它到距離聯(lián)系起來是解題關(guān)鍵.15、【解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.16、0或6【解析】

計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,當時,以線段為直徑的圓恰好經(jīng)過坐標原點O.【解析】

(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點.設(shè)點,,,,將直線的方程代入,化簡,利用韋達定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O.理由如下:設(shè)點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經(jīng)過坐標原點O,所以,即.又,于是,解得,經(jīng)檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經(jīng)過坐標原點O【點睛】本題考查橢圓方程的求法,橢圓的簡單性質(zhì),直線與橢圓位置關(guān)系的綜合應(yīng)用,考查計算能力以及轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.18、(1)在上增;在上減;(2)(i);(ii)2【解析】

(1)求導(dǎo)求出,對分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當時,,即在上增;當時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當時,,在單調(diào)遞增,所以滿足題意;當時,,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.19、(1)28種;(2)分布見解析,.【解析】

(1)分這名女教師分別來自黨員學(xué)習(xí)組與非黨員學(xué)習(xí)組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學(xué)期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點睛】本題主要考查組合數(shù)與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準確性.20、(1);(2)當=0時,點O到直線MN的距離為定值.【解析】

(1)的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因為在橢圓上,當是短軸端點時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為.(2)在時,設(shè)直線方程為,原點到此直線的距離為,即,由,得,,,所以,,,所以當時,,,為常數(shù).若,則,,,,,綜上所述,當=0時,點O到直線MN的距離為定值.【點睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時常用此法通過韋達定理聯(lián)系已知式與待求式.21、(1);(2)【解析】

(1),對函數(shù)求導(dǎo),分別求出和,即可求出在點處的切線方程;(2)對求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當時,在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當時,令,解得,即在上單調(diào)遞減,則,故不符合題意;③當時,在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.22、(Ⅰ)見解析(Ⅱ)見解析【解析】

(Ⅰ)求導(dǎo)得到,討論,,三種情況得到單調(diào)區(qū)間.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論